

IPv6

	1. OPNFV IPv6 Project Release Notes
	1.1. OPNFV IPv6 Project Release Notes
	1.1.1. Version History

	1.1.2. Release Data

	1.1.3. Important Notes

	1.1.4. Summary

	1.1.5. Known Limitations, Issues and Workarounds
	1.1.5.1. System Limitations

	1.1.5.2. Known Issues

	1.1.5.3. Workarounds

	1.1.6. Test Result

	1.1.7. References

	2. IPv6 Installation Procedure
	2.1. Install OPNFV on IPv6-Only Infrastructure
	2.1.1. Install OPNFV in OpenStack-Only Environment

	2.1.2. Install OPNFV in OpenStack with ODL-L3 Environment

	2.1.3. Testing Methodology
	2.1.3.1. Underlay Testing for OpenStack API Endpoints

	2.1.3.2. Overlay Testing

	IPv6 Configuration Guide
	1. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter
	1.1. Pre-configuration Activities

	1.2. Setup Manual in OpenStack-Only Environment
	1.2.1. Install OPNFV and Preparation

	1.2.2. Disable Security Groups in OpenStack ML2 Setup

	1.2.3. Set Up Service VM as IPv6 vRouter

	2. IPv6 Post Installation Procedures
	2.1. Automated post installation activities

	3. Using IPv6 Feature of Hunter Release
	3.1. IPv6 Gap Analysis with OpenStack Rocky

	3.2. IPv6 Gap Analysis with Open Daylight Fluorine

	3.3. Exploring IPv6 in Container Networking
	3.3.1. Install Docker Community Edition (CE)

	3.3.2. IPv6 with Docker

	3.3.3. Design Simple IPv6 Topologies

	3.3.4. Design Solutions
	3.3.4.1. Connect a container to a user-defined bridge

	3.3.4.2. Disconnect a container from a user-defined bridge

	3.3.5. Challenges in Production Use

	3.3.6. References

	3.4. ICMPv6 and NDP
	3.4.1. IPv6-only Containers & Using NDP Proxying

	3.4.2. References

	3.5. Docker IPv6 Simple Cluster Topology
	3.5.1. Switched Network Environment

	3.5.2. Routed Network Environment

	3.5.3. References

	3.6. Docker IPv6 NAT
	3.6.1. What is the Issue with Using IPv6 with Containers?

	3.6.2. Why not IPv6 with NAT?

	3.6.3. Conclusion

	3.6.4. References

1. OPNFV IPv6 Project Release Notes

	1.1. OPNFV IPv6 Project Release Notes

1.1. OPNFV IPv6 Project Release Notes

This document provides the release notes for Hunter of IPv6 Project.

	Version History

	Release Data

	Important Notes

	Summary

	Known Limitations, Issues and Workarounds

	System Limitations

	Known Issues

	Workarounds

	Test Result

	References

1.1.1. Version History

	Date

	Version

	Author

	Comment

	2019-03-14

	0.1.0

	Bin Hu

	Initial draft

	2019-05-04

	1.0.0

	Bin Hu

	Hunter 8.0 Release

	2019-06-28

	1.1.0

	Bin Hu

	Hunter 8.1 Release

1.1.2. Release Data

	Project

	IPv6

	Repo/tag

	opnfv-8.1.0

	Release designation

	Hunter 8.1

	Release date

	June 28, 2019

	Purpose of the delivery

	OPNFV Hunter 8.1 Release

1.1.3. Important Notes

Attention: Please be aware that:

	Since Danube, Apex Installer no longer supports Open Daylight L2-only
environment or odl-ovsdb-openstack. Instead, it supports Open Daylight L3
deployment with odl-netvirt-openstack.

	IPv6 features are not fully supported in Open Daylight L3 with
odl-netvirt-openstack yet. It is still a work in progress.

	Thus we cannot realize Service VM as an IPv6 vRouter using Apex Installer
under OpenStack + Open Daylight L3 with odl-netvirt-openstack environment.

For details, please refer to our User Guide.

1.1.4. Summary

This is the Hunter release of the IPv6 feature as part of OPNFV, including:

	Installation of OPNFV on IPv6-Only Infrastructure by Apex Installer

	Configuration of setting up a Service VM as an IPv6 vRouter in OpenStack-Only
environment

	User Guide, which includes:

	gap analysis of IPv6 support in OpenStack Rocky and OpenDaylight Fluorine

	exploration of IPv6 in container networking

Please refer to our:

	Installation Guide

	Configuration Guide

	User Guide

1.1.5. Known Limitations, Issues and Workarounds

1.1.5.1. System Limitations

None.

1.1.5.2. Known Issues

None.

1.1.5.3. Workarounds

N/A.

1.1.6. Test Result

Please refer to Testing Methodology.

1.1.7. References

For more information on the OPNFV Hunter release, please see:

http://www.opnfv.org/software

2. IPv6 Installation Procedure

	Abstract

	

This document provides the users with the Installation Procedure to install
OPNFV Hunter Release on IPv6-only Infrastructure.

	2.1. Install OPNFV on IPv6-Only Infrastructure
	2.1.1. Install OPNFV in OpenStack-Only Environment

	2.1.2. Install OPNFV in OpenStack with ODL-L3 Environment

	2.1.3. Testing Methodology
	2.1.3.1. Underlay Testing for OpenStack API Endpoints

	2.1.3.2. Overlay Testing

2.1. Install OPNFV on IPv6-Only Infrastructure

This section provides instructions to install OPNFV on IPv6-only
Infrastructure. All underlay networks and API endpoints will be IPv6-only
except:

	“admin” network in underlay/undercloud still has to be IPv4.

	It was due to lack of support of IPMI over IPv6 or PXE over IPv6.

	iPXE does support IPv6 now. Ironic has added support for booting
nodes with IPv6.

	We are starting to work on enabling IPv6-only environment for all
networks. For TripleO, this work is still ongoing.

	Metadata server is still IPv4 only.

Except the limitations above, the use case scenario of the IPv6-only
infrastructure includes:

	Support OPNFV deployment on an IPv6 only infrastructure.

	Horizon/ODL-DLUX access using IPv6 address from an external host.

	OpenStack API access using IPv6 addresses from various python-clients.

	Ability to create Neutron Routers, IPv6 subnets (e.g. SLAAC/DHCPv6-Stateful/
DHCPv6-Stateless) to support North-South traffic.

	Inter VM communication (East-West routing) when VMs are spread
across two compute nodes.

	VNC access into a VM using IPv6 addresses.

	IPv6 support in OVS VxLAN (and/or GRE) tunnel endpoints with OVS 2.6+.

	IPv6 support in iPXE, and booting nodes with IPv6 (NEW).

2.1.1. Install OPNFV in OpenStack-Only Environment

Apex Installer:

HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-n /etc/opnfv-apex/network_settings_v6.yaml

HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_settings_v6.yaml

Non-HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-n /etc/opnfv-apex/network_settings_v6.yaml

Non-HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_settings_v6.yaml

Note:
#
1. Parameter ""-v" is mandatory for Virtual deployment
2. Parameter "-i <inventory file>" is mandatory for Bare Metal deployment
2.1 Refer to https://git.opnfv.org/cgit/apex/tree/config/inventory for examples of inventory file
3. You can use "-n /etc/opnfv-apex/network_settings.yaml" for deployment in IPv4 infrastructure

Please NOTE that:

	You need to refer to installer’s documentation for other necessary
parameters applicable to your deployment.

	You need to refer to Release Notes and installer’s documentation if
there is any issue in installation.

2.1.2. Install OPNFV in OpenStack with ODL-L3 Environment

Apex Installer:

HA, Virtual deployment in OpenStack with Open Daylight L3 environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-odl-nofeature-ha.yaml \
-n /etc/opnfv-apex/network_settings_v6.yaml

HA, Bare Metal deployment in OpenStack with Open Daylight L3 environment
./opnfv-deploy -d /etc/opnfv-apex/os-odl-nofeature-ha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_settings_v6.yaml

Non-HA, Virtual deployment in OpenStack with Open Daylight L3 environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-odl-nofeature-noha.yaml \
-n /etc/opnfv-apex/network_settings_v6.yaml

Non-HA, Bare Metal deployment in OpenStack with Open Daylight L3 environment
./opnfv-deploy -d /etc/opnfv-apex/os-odl-nofeature-noha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_settings_v6.yaml

Note:
#
1. Parameter ""-v" is mandatory for Virtual deployment
2. Parameter "-i <inventory file>" is mandatory for Bare Metal deployment
2.1 Refer to https://git.opnfv.org/cgit/apex/tree/config/inventory for examples of inventory file
3. You can use "-n /etc/opnfv-apex/network_settings.yaml" for deployment in IPv4 infrastructure

Please NOTE that:

	You need to refer to installer’s documentation for other necessary
parameters applicable to your deployment.

	You need to refer to Release Notes and installer’s documentation if
there is any issue in installation.

2.1.3. Testing Methodology

There are 2 levels of testing to validate the deployment.

2.1.3.1. Underlay Testing for OpenStack API Endpoints

Underlay Testing is to validate that API endpoints are listening on IPv6
addresses. Currently, we are only considering the Underlay Testing for
OpenStack API endpoints. The Underlay Testing for Open Daylight API
endpoints is for future release.

The Underlay Testing for OpenStack API endpoints can be as simple as
validating Keystone service, and as complete as validating each API endpoint.
It is important to reuse Tempest API testing. Currently:

	Apex Installer will change OS_AUTH_URL in overcloudrc during
installation process. For example:
export OS_AUTH_URL=http://[2001:db8::15]:5000/v2.0.
OS_AUTH_URL points to Keystone and Keystone catalog.

	When FuncTest runs Tempest for the first time, the OS_AUTH_URL is taken
from the environment and placed automatically in Tempest.conf.

	Under this circumstance, openstack catalog list will return IPv6 URL
endpoints for all the services in catalog, including Nova, Neutron, etc,
and covering public URLs, private URLs and admin URLs.

	Thus, as long as the IPv6 URL is given in the overclourc, all the tests
will use that (including Tempest).

Therefore Tempest API testing is reused to validate API endpoints are listening
on IPv6 addresses as stated above. They are part of OpenStack default Smoke
Tests, run in FuncTest and integrated into OPNFV’s CI/CD environment.

2.1.3.2. Overlay Testing

Overlay Testing is to validate that IPv6 is supported in tenant networks,
subnets and routers. Both Tempest API testing and Tempest Scenario testing are
used in our Overlay Testing.

Tempest API testing validates that the Neutron API supports the creation of
IPv6 networks, subnets, routers, etc:

tempest.api.network.test_networks.BulkNetworkOpsIpV6Test.test_bulk_create_delete_network
tempest.api.network.test_networks.BulkNetworkOpsIpV6Test.test_bulk_create_delete_port
tempest.api.network.test_networks.BulkNetworkOpsIpV6Test.test_bulk_create_delete_subnet
tempest.api.network.test_networks.NetworksIpV6Test.test_create_update_delete_network_subnet
tempest.api.network.test_networks.NetworksIpV6Test.test_external_network_visibility
tempest.api.network.test_networks.NetworksIpV6Test.test_list_networks
tempest.api.network.test_networks.NetworksIpV6Test.test_list_subnets
tempest.api.network.test_networks.NetworksIpV6Test.test_show_network
tempest.api.network.test_networks.NetworksIpV6Test.test_show_subnet
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_create_update_delete_network_subnet
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_external_network_visibility
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_list_networks
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_list_subnets
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_show_network
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_show_subnet
tempest.api.network.test_ports.PortsIpV6TestJSON.test_create_port_in_allowed_allocation_pools
tempest.api.network.test_ports.PortsIpV6TestJSON.test_create_port_with_no_securitygroups
tempest.api.network.test_ports.PortsIpV6TestJSON.test_create_update_delete_port
tempest.api.network.test_ports.PortsIpV6TestJSON.test_list_ports
tempest.api.network.test_ports.PortsIpV6TestJSON.test_show_port
tempest.api.network.test_routers.RoutersIpV6Test.test_add_multiple_router_interfaces
tempest.api.network.test_routers.RoutersIpV6Test.test_add_remove_router_interface_with_port_id
tempest.api.network.test_routers.RoutersIpV6Test.test_add_remove_router_interface_with_subnet_id
tempest.api.network.test_routers.RoutersIpV6Test.test_create_show_list_update_delete_router
tempest.api.network.test_security_groups.SecGroupIPv6Test.test_create_list_update_show_delete_security_group
tempest.api.network.test_security_groups.SecGroupIPv6Test.test_create_show_delete_security_group_rule
tempest.api.network.test_security_groups.SecGroupIPv6Test.test_list_security_groups

Tempest Scenario testing validates some specific overlay IPv6 scenarios
(i.e. use cases) as follows:

tempest.scenario.test_network_v6.TestGettingAddress.test_dhcp6_stateless_from_os
tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_dhcp6_stateless_from_os
tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_multi_prefix_dhcpv6_stateless
tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_multi_prefix_slaac
tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_slaac_from_os
tempest.scenario.test_network_v6.TestGettingAddress.test_multi_prefix_dhcpv6_stateless
tempest.scenario.test_network_v6.TestGettingAddress.test_multi_prefix_slaac
tempest.scenario.test_network_v6.TestGettingAddress.test_slaac_from_os

The above Tempest API testing and Scenario testing are quite comprehensive to
validate overlay IPv6 tenant networks. They are part of OpenStack default
Smoke Tests, run in FuncTest and integrated into OPNFV’s CI/CD environment.

IPv6 Configuration Guide

	Abstract

	

This document provides the users with the Configuration Guide to set up a
service VM as an IPv6 vRouter using OPNFV Hunter Release.

	1. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter
	1.1. Pre-configuration Activities

	1.2. Setup Manual in OpenStack-Only Environment
	1.2.1. Install OPNFV and Preparation

	1.2.2. Disable Security Groups in OpenStack ML2 Setup

	1.2.3. Set Up Service VM as IPv6 vRouter

	2. IPv6 Post Installation Procedures
	2.1. Automated post installation activities

1. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter

This section provides instructions to set up a service VM as an IPv6 vRouter using OPNFV Hunter Release
installers. Because Open Daylight no longer supports L2-only option, and there is only limited support of
IPv6 in L3 option of Open Daylight, setup of service VM as an IPv6 vRouter is only available under
pure/native OpenStack environment. The deployment model may be HA or non-HA. The infrastructure may be
bare metal or virtual environment.

1.1. Pre-configuration Activities

The configuration will work only in OpenStack-only environment.

Depending on which installer will be used to deploy OPNFV, each environment may be deployed
on bare metal or virtualized infrastructure. Each deployment may be HA or non-HA.

Refer to the previous installer configuration chapters, installations guide and release notes.

1.2. Setup Manual in OpenStack-Only Environment

If you intend to set up a service VM as an IPv6 vRouter in OpenStack-only environment of
OPNFV Hunter Release, please NOTE that:

	Because the anti-spoofing rules of Security Group feature in OpenStack prevents
a VM from forwarding packets, we need to disable Security Group feature in the
OpenStack-only environment.

	The hostnames, IP addresses, and username are for exemplary purpose in instructions.
Please change as needed to fit your environment.

	The instructions apply to both deployment model of single controller node and
HA (High Availability) deployment model where multiple controller nodes are used.

1.2.1. Install OPNFV and Preparation

OPNFV-NATIVE-INSTALL-1: To install OpenStack-only environment of OPNFV Hunter Release:

Apex Installer:

HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Non-HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

Non-HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Note:
#
1. Parameter ""-v" is mandatory for Virtual deployment
2. Parameter "-i <inventory file>" is mandatory for Bare Metal deployment
2.1 Refer to https://git.opnfv.org/cgit/apex/tree/config/inventory for examples of inventory file
3. You can use "-n /etc/opnfv-apex/network_setting_v6.yaml" for deployment in IPv6-only infrastructure

Compass Installer:

HA deployment in OpenStack-only environment
export ISO_URL=file://$BUILD_DIRECTORY/compass.iso
export OS_VERSION=${{COMPASS_OS_VERSION}}
export OPENSTACK_VERSION=${{COMPASS_OPENSTACK_VERSION}}
export CONFDIR=$WORKSPACE/deploy/conf/vm_environment
./deploy.sh --dha $CONFDIR/os-nosdn-nofeature-ha.yml \
--network $CONFDIR/$NODE_NAME/network.yml

Non-HA deployment in OpenStack-only environment
Non-HA deployment is currently not supported by Compass installer

Fuel Installer:

HA deployment in OpenStack-only environment
Scenario Name: os-nosdn-nofeature-ha
Scenario Configuration File: ha_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-nosdn-nofeature-ha -i <iso-uri>

Non-HA deployment in OpenStack-only environment
Scenario Name: os-nosdn-nofeature-noha
Scenario Configuration File: no-ha_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-nosdn-nofeature-noha -i <iso-uri>

Note:
#
1. Refer to http://git.opnfv.org/cgit/fuel/tree/deploy/scenario/scenario.yaml for scenarios
2. Refer to http://git.opnfv.org/cgit/fuel/tree/ci/README for description of
stack configuration directory structure
3. <stack-config-uri> is the base URI of stack configuration directory structure
3.1 Example: http://git.opnfv.org/cgit/fuel/tree/deploy/config
4. <lab-name> and <pod-name> must match the directory structure in stack configuration
4.1 Example of <lab-name>: -l devel-pipeline
4.2 Example of <pod-name>: -p elx
5. <iso-uri> could be local or remote ISO image of Fuel Installer
5.1 Example: http://artifacts.opnfv.org/fuel/euphrates/opnfv-euphrates.1.0.iso
#
Please refer to Fuel Installer's documentation for further information and any update

Joid Installer:

HA deployment in OpenStack-only environment
./deploy.sh -o mitaka -s nosdn -t ha -l default -f ipv6

Non-HA deployment in OpenStack-only environment
./deploy.sh -o mitaka -s nosdn -t nonha -l default -f ipv6

Please NOTE that:

	You need to refer to installer’s documentation for other necessary
parameters applicable to your deployment.

	You need to refer to Release Notes and installer’s documentation if there is
any issue in installation.

OPNFV-NATIVE-INSTALL-2: Clone the following GitHub repository to get the
configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git \
/opt/stack/opnfv_os_ipv6_poc

1.2.2. Disable Security Groups in OpenStack ML2 Setup

Please NOTE that although Security Groups feature has been disabled automatically
through local.conf configuration file by some installers such as devstack, it is very likely
that other installers such as Apex, Compass, Fuel or Joid will enable Security
Groups feature after installation.

Please make sure that Security Groups are disabled in the setup

In order to disable Security Groups globally, please make sure that the settings in
OPNFV-NATIVE-SEC-1 and OPNFV-NATIVE-SEC-2 are applied, if they
are not there by default.

OPNFV-NATIVE-SEC-1: Change the settings in
/etc/neutron/plugins/ml2/ml2_conf.ini as follows, if they are not there by default

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
enable_security_group = True
firewall_driver = neutron.agent.firewall.NoopFirewallDriver
[ml2]
extension_drivers = port_security
[agent]
prevent_arp_spoofing = False

OPNFV-NATIVE-SEC-2: Change the settings in /etc/nova/nova.conf as follows,
if they are not there by default.

/etc/nova/nova.conf
[DEFAULT]
security_group_api = neutron
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OPNFV-NATIVE-SEC-3: After updating the settings, you will have to restart the
Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary
depending on the installer. Please refer to relevant documentation of specific installers

1.2.3. Set Up Service VM as IPv6 vRouter

OPNFV-NATIVE-SETUP-1: Now we assume that OpenStack multi-node setup is up and running.
We have to source the tenant credentials in OpenStack controller node in this step.
Please NOTE that the method of sourcing tenant credentials may vary depending on installers.
For example:

Apex installer:

On jump host, source the tenant credentials using /bin/opnfv-util provided by Apex installer
opnfv-util undercloud "source overcloudrc; keystone service-list"

Alternatively, you can copy the file /home/stack/overcloudrc from the installer VM called "undercloud"
to a location in controller node, for example, in the directory /opt, and do:
source /opt/overcloudrc

Compass installer:

source the tenant credentials using Compass installer of OPNFV
source /opt/admin-openrc.sh

Fuel installer:

source the tenant credentials using Fuel installer of OPNFV
source /root/openrc

Joid installer:

source the tenant credentials using Joid installer of OPNFV
source $HOME/joid_config/admin-openrc

devstack:

source the tenant credentials in devstack
source openrc admin demo

Please refer to relevant documentation of installers if you encounter any issue.

OPNFV-NATIVE-SETUP-2: Download fedora22 image which would be used for vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/\
Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OPNFV-NATIVE-SETUP-3: Import Fedora22 image to glance

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare \
--file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OPNFV-NATIVE-SETUP-4: This step is Informational. OPNFV Installer has taken care of this step
during deployment. You may refer to this step only if there is any issue, or if you are using other installers.

We have to move the physical interface (i.e. the public network interface) to br-ex, including moving
the public IP address and setting up default route. Please refer to OS-NATIVE-SETUP-4 and
OS-NATIVE-SETUP-5 in our more complete instruction [http://artifacts.opnfv.org/ipv6/docs/setupservicevm/5-ipv6-configguide-scenario-1-native-os.html#set-up-service-vm-as-ipv6-vrouter].

OPNFV-NATIVE-SETUP-5: Create Neutron routers ipv4-router and ipv6-router
which need to provide external connectivity.

neutron router-create ipv4-router
neutron router-create ipv6-router

OPNFV-NATIVE-SETUP-6: Create an external network/subnet ext-net using
the appropriate values based on the data-center physical network setup.

Please NOTE that you may only need to create the subnet of ext-net because OPNFV installers
should have created an external network during installation. You must use the same name of external
network that installer creates when you create the subnet. For example:

	Apex installer: external

	Compass installer: ext-net

	Fuel installer: admin_floating_net

	Joid installer: ext-net

Please refer to the documentation of installers if there is any issue

This is needed only if installer does not create an external work
Otherwise, skip this command "net-create"
neutron net-create --router:external ext-net

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,\
end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

OPNFV-NATIVE-SETUP-7: Create Neutron networks ipv4-int-network1 and
ipv6-int-network2 with port_security disabled

neutron net-create ipv4-int-network1
neutron net-create ipv6-int-network2

OPNFV-NATIVE-SETUP-8: Create IPv4 subnet ipv4-int-subnet1 in the internal network
ipv4-int-network1, and associate it to ipv4-router.

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 \
ipv4-int-network1 20.0.0.0/24

neutron router-interface-add ipv4-router ipv4-int-subnet1

OPNFV-NATIVE-SETUP-9: Associate the ext-net to the Neutron routers ipv4-router
and ipv6-router.

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv4-router ext-net
neutron router-gateway-set ipv6-router ext-net

OPNFV-NATIVE-SETUP-10: Create two subnets, one IPv4 subnet ipv4-int-subnet2 and
one IPv6 subnet ipv6-int-subnet2 in ipv6-int-network2, and associate both subnets to
ipv6-router

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 \
ipv6-int-network2 10.0.0.0/24

neutron subnet-create --name ipv6-int-subnet2 --ip-version 6 --ipv6-ra-mode slaac \
--ipv6-address-mode slaac ipv6-int-network2 2001:db8:0:1::/64

neutron router-interface-add ipv6-router ipv4-int-subnet2
neutron router-interface-add ipv6-router ipv6-int-subnet2

OPNFV-NATIVE-SETUP-11: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

OPNFV-NATIVE-SETUP-12: Create ports for vRouter (with some specific MAC address
- basically for automation - to know the IPv6 addresses that would be assigned to the port).

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv6-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1

OPNFV-NATIVE-SETUP-13: Create ports for VM1 and VM2.

neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

OPNFV-NATIVE-SETUP-14: Update ipv6-router with routing information to subnet
2001:db8:0:2::/64

neutron router-update ipv6-router --routes type=dict list=true \
destination=2001:db8:0:2::/64,nexthop=2001:db8:0:1:f816:3eff:fe11:1111

OPNFV-NATIVE-SETUP-15: Boot Service VM (vRouter), VM1 and VM2

nova boot --image Fedora22 --flavor m1.small \
--user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') \
--nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') \
--key-name vRouterKey vRouter

nova list

Please wait for some 10 to 15 minutes so that necessary packages (like radvd)
are installed and vRouter is up.
nova console-log vRouter

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-controller \
--nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') \
--key-name vRouterKey VM1

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') \
--key-name vRouterKey VM2

nova list # Verify that all the VMs are in ACTIVE state.

OPNFV-NATIVE-SETUP-16: If all goes well, the IPv6 addresses assigned to the VMs
would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address:
2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address:
2001:db8:0:2::1/64
VM1 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe44:4444/64

OPNFV-NATIVE-SETUP-17: Now we need to disable eth0-VM1, eth0-VM2,
eth0-vRouter and eth1-vRouter port-security

for port in eth0-VM1 eth0-VM2 eth0-vRouter eth1-vRouter
do
 neutron port-update --no-security-groups $port
 neutron port-update $port --port-security-enabled=False
 neutron port-show $port | grep port_security_enabled
done

OPNFV-NATIVE-SETUP-18: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

If everything goes well, ssh will be successful and you will be logged into those VMs.
Run some commands to verify that IPv6 addresses are configured on eth0 interface.

OPNFV-NATIVE-SETUP-19: Show an IPv6 address with a prefix of 2001:db8:0:2::/64

ip address show

OPNFV-NATIVE-SETUP-20: ping some external IPv6 address, e.g. ipv6-router

ping6 2001:db8:0:1::1

If the above ping6 command succeeds, it implies that vRouter was able to successfully forward the IPv6 traffic
to reach external ipv6-router.

2. IPv6 Post Installation Procedures

Congratulations, you have completed the setup of using a service VM to act as an IPv6 vRouter.
You have validated the setup based on the instruction in previous sections. If you want to further
test your setup, you can ping6 among VM1, VM2, vRouter and ipv6-router.

This setup allows further open innovation by any 3rd-party.

2.1. Automated post installation activities

Refer to the relevant testing guides, results, and release notes of Yardstick Project.

3. Using IPv6 Feature of Hunter Release

	Abstract

	

This section provides the users with:

	Gap Analysis regarding IPv6 feature requirements with OpenStack Rocky
Official Release

	Gap Analysis regarding IPv6 feature requirements with Open Daylight Fluorine
Official Release

	IPv6 Setup in Container Networking

	Use of Neighbor Discovery (ND) Proxy to connect IPv6-only container to
external network

	Docker IPv6 Simple Cluster Topology

	Study and recommendation regarding Docker IPv6 NAT

The gap analysis serves as feature specific user guides and references when
as a user you may leverage the IPv6 feature in the platform and need to perform
some IPv6 related operations.

The IPv6 Setup in Container Networking serves as feature specific user guides
and references when as a user you may want to explore IPv6 in Docker container
environment. The use of NDP Proxying is explored to connect IPv6-only
containers to external network. The Docker IPv6 simple cluster topology is
studied with two Hosts, each with 2 Docker containers. Docker IPv6 NAT topic
is also explored.

For more information, please find Neutron’s IPv6 document for Rocky Release [http://docs.openstack.org/neutron/rocky/admin/config-ipv6.html].

	3.1. IPv6 Gap Analysis with OpenStack Rocky

	3.2. IPv6 Gap Analysis with Open Daylight Fluorine

	3.3. Exploring IPv6 in Container Networking
	3.3.1. Install Docker Community Edition (CE)

	3.3.2. IPv6 with Docker

	3.3.3. Design Simple IPv6 Topologies

	3.3.4. Design Solutions
	3.3.4.1. Connect a container to a user-defined bridge

	3.3.4.2. Disconnect a container from a user-defined bridge

	3.3.5. Challenges in Production Use

	3.3.6. References

	3.4. ICMPv6 and NDP
	3.4.1. IPv6-only Containers & Using NDP Proxying

	3.4.2. References

	3.5. Docker IPv6 Simple Cluster Topology
	3.5.1. Switched Network Environment

	3.5.2. Routed Network Environment

	3.5.3. References

	3.6. Docker IPv6 NAT
	3.6.1. What is the Issue with Using IPv6 with Containers?

	3.6.2. Why not IPv6 with NAT?

	3.6.3. Conclusion

	3.6.4. References

3.1. IPv6 Gap Analysis with OpenStack Rocky

This section provides users with IPv6 gap analysis regarding feature requirement with
OpenStack Neutron in Rocky Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with OpenStack Neutron in Rocky Official Release.

Please NOTE that in terms of IPv6 support in OpenStack Neutron, there is no difference
between Rocky release and prior, e.g. Queens, Pike and Ocata, releases.

	Use Case / Requirement

	Supported in Rocky

	Notes

	All topologies work in a multi-tenant environment

	Yes

	The IPv6 design is following the Neutron tenant networks model;
dnsmasq is being used inside DHCP network namespaces, while radvd
is being used inside Neutron routers namespaces to provide full
isolation between tenants. Tenant isolation can be based on VLANs,
GRE, or VXLAN encapsulation. In case of overlays, the transport
network (and VTEPs) must be IPv4 based as of today.

	IPv6 VM to VM only

	Yes

	It is possible to assign IPv6-only addresses to VMs. Both switching
(within VMs on the same tenant network) as well as east/west routing
(between different networks of the same tenant) are supported.

	IPv6 external L2 VLAN directly attached to a VM

	Yes

	IPv6 provider network model; RA messages from upstream (external)
router are forwarded into the VMs

	IPv6 subnet routed via L3 agent to an external IPv6 network

	Both VLAN and overlay (e.g. GRE, VXLAN) subnet attached
to VMs;

	Must be able to support multiple L3 agents for a given
external network to support scaling (neutron scheduler
to assign vRouters to the L3 agents)

	
	Yes

	Yes

	Configuration is enhanced since Kilo to allow easier setup of the
upstream gateway, without the user being forced to create an IPv6
subnet for the external network.

	Ability for a NIC to support both IPv4 and IPv6 (dual
stack) address.

	VM with a single interface associated with a network,
which is then associated with two subnets.

	VM with two different interfaces associated with two
different networks and two different subnets.

	
	Yes

	Yes

	Dual-stack is supported in Neutron with the addition of
Multiple IPv6 Prefixes Blueprint

	Support IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	
	Yes

	Yes

	Yes

	

	Ability to create a port on an IPv6 DHCPv6 Stateful subnet
and assign a specific IPv6 address to the port and have it
taken out of the DHCP address pool.

	Yes

	

	Ability to create a port with fixed_ip for a
SLAAC/DHCPv6-Stateless Subnet.

	No

	The following patch disables this operation:
https://review.openstack.org/#/c/129144/

	Support for private IPv6 to external IPv6 floating IP;
Ability to specify floating IPs via Neutron API (REST and
CLI) as well as via Horizon, including combination of
IPv6/IPv4 and IPv4/IPv6 floating IPs if implemented.

	Rejected

	Blueprint proposed in upstream and got rejected. General expectation
is to avoid NAT with IPv6 by assigning GUA to tenant VMs. See
https://review.openstack.org/#/c/139731/ for discussion.

	Provide IPv6/IPv4 feature parity in support for
pass-through capabilities (e.g., SR-IOV).

	To-Do

	The L3 configuration should be transparent for the SR-IOV
implementation. SR-IOV networking support introduced in Juno based
on the sriovnicswitch ML2 driver is expected to work with IPv4
and IPv6 enabled VMs. We need to verify if it works or not.

	Additional IPv6 extensions, for example: IPSEC, IPv6
Anycast, Multicast

	No

	It does not appear to be considered yet (lack of clear requirements)

	VM access to the meta-data server to obtain user data, SSH
keys, etc. using cloud-init with IPv6 only interfaces.

	No

	This is currently not supported. Config-drive or dual-stack IPv4 /
IPv6 can be used as a workaround (so that the IPv4 network is used
to obtain connectivity with the metadata service). The following
blog How to Use Config-Drive for Metadata with IPv6 Network [http://superuser.openstack.org/articles/deploying-ipv6-only-tenants-with-openstack/] provides a neat summary on how to use
config-drive for metadata with IPv6 network.

	Full support for IPv6 matching (i.e., IPv6, ICMPv6, TCP,
UDP) in security groups. Ability to control and manage all
IPv6 security group capabilities via Neutron/Nova API (REST
and CLI) as well as via Horizon.

	Yes

	Both IPTables firewall driver and OVS firewall driver support IPv6
Security Group API.

	During network/subnet/router create, there should be an
option to allow user to specify the type of address
management they would like. This includes all options
including those low priority if implemented (e.g., toggle
on/off router and address prefix advertisements); It must
be supported via Neutron API (REST and CLI) as well as via
Horizon

	Yes

	Two new Subnet attributes were introduced to control IPv6 address
assignment options:

	ipv6-ra-mode: to determine who sends Router Advertisements;

	ipv6-address-mode: to determine how VM obtains IPv6 address,
default gateway, and/or optional information.

	Security groups anti-spoofing: Prevent VM from using a
source IPv6/MAC address which is not assigned to the VM

	Yes

	

	Protect tenant and provider network from rogue RAs

	Yes

	When using a tenant network, Neutron is going to automatically
handle the filter rules to allow connectivity of RAs to the VMs only
from the Neutron router port; with provider networks, users are
required to specify the LLA of the upstream router during the subnet
creation, or otherwise manually edit the security-groups rules to
allow incoming traffic from this specific address.

	Support the ability to assign multiple IPv6 addresses to
an interface; both for Neutron router interfaces and VM
interfaces.

	Yes

	

	Ability for a VM to support a mix of multiple IPv4 and IPv6
networks, including multiples of the same type.

	Yes

	

	IPv6 Support in “Allowed Address Pairs” Extension

	Yes

	

	Support for IPv6 Prefix Delegation.

	Yes

	Partial support in Rocky

	Distributed Virtual Routing (DVR) support for IPv6

	No

	In Rocky DVR implementation, IPv6 works. But all the IPv6 ingress/
egress traffic is routed via the centralized controller node, i.e.
similar to SNAT traffic.
A fully distributed IPv6 router is not yet supported in Neutron.

	VPNaaS

	Yes

	VPNaaS supports IPv6. But this feature is not extensively tested.

	FWaaS

	Yes

	

	BGP Dynamic Routing Support for IPv6 Prefixes

	Yes

	BGP Dynamic Routing supports peering via IPv6 and advertising IPv6
prefixes.

	VxLAN Tunnels with IPv6 endpoints.

	Yes

	Neutron ML2/OVS supports configuring local_ip with IPv6 address so
that VxLAN tunnels are established with IPv6 addresses. This
feature requires OVS 2.6 or higher version.

	IPv6 First-Hop Security, IPv6 ND spoofing

	Yes

	

	IPv6 support in Neutron Layer3 High Availability
(keepalived+VRRP).

	Yes

	

3.2. IPv6 Gap Analysis with Open Daylight Fluorine

This section provides users with IPv6 gap analysis regarding feature requirement with
Open Daylight Fluorine Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with Open Daylight Fluorine Official Release.

Open Daylight Fluorine Status

In Open Daylight Fluorine official release, the legacy Old Netvirt identified by feature
odl-ovsdb-openstack is deprecated and no longer supported. The New Netvirt
identified by feature odl-netvirt-openstack is used.

Two new features are supported in Open Daylight Fluorine official release:

	Support for advertising MTU info in IPv6 RAs

	IPv6 external connectivity for FLAT/VLAN based provider networks

	Use Case / Requirement

	Supported in ODL Fluorine

	Notes

	REST API support for IPv6 subnet creation in ODL

	Yes

	Yes, it is possible to create IPv6 subnets in ODL using
Neutron REST API.

For a network which has both IPv4 and IPv6 subnets, ODL
mechanism driver will send the port information which
includes IPv4/v6 addresses to ODL Neutron northbound API.
When port information is queried, it displays IPv4 and IPv6
addresses.

	IPv6 Router support in ODL:

	Communication between VMs on same network

	Yes

	

	IPv6 Router support in ODL:

	Communication between VMs on different
networks connected to the same router
(east-west)

	Yes

	

	IPv6 Router support in ODL:

	External routing (north-south)

	NO

	This feature is targeted for Flourine Release.
In ODL Fluorine Release, RFE “IPv6 Inter-DC L3 North-South
Connectivity Using L3VPN Provider Network Types” Spec 1 is
merged. But the code patch has not been merged yet.
On the other hand, “IPv6 Cluster Support” is available in
Fluorine Release 2. Basically, existing IPv6 features were
enhanced to work in a three node ODL Clustered Setup.

	IPAM: Support for IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	Yes

	ODL IPv6 Router supports all the IPv6 Address assignment
modes along with Neutron DHCP Agent.

	When using ODL for L2 forwarding/tunneling, it is
compatible with IPv6.

	Yes

	

	Full support for IPv6 matching (i.e. IPv6, ICMPv6,
TCP, UDP) in security groups. Ability to control
and manage all IPv6 security group capabilities
via Neutron/Nova API (REST and CLI) as well as
via Horizon

	Yes

	

	Shared Networks support

	Yes

	

	IPv6 external L2 VLAN directly attached to a VM.

	Yes

	Targeted for Flourine Release

	ODL on an IPv6 only Infrastructure.

	Yes

	Deploying OpenStack with ODL on an IPv6 only infrastructure
where the API endpoints are all IPv6 addresses.

	VxLAN Tunnels with IPv6 Endpoints

	Yes

	

	IPv6 L3VPN Dual Stack with Single router

	Yes

	Refer to “Dual Stack VM support in OpenDaylight” Spec 3.

	IPv6 Inter Data Center using L3VPNs

	Yes

	Refer to “IPv6 Inter-DC L3 North-South connectivity using
L3VPN provider network types” Spec 1.

	Support for advertising MTU info in IPv6 RAs

	Yes

	

	IPv6 external connectivity for FLAT/VLAN based
provider networks

	Yes

	

	1(1,2)

	https://docs.opendaylight.org/projects/netvirt/en/stable-fluorine/specs/oxygen/ipv6-interdc-l3vpn.html

	2

	http://git.opendaylight.org/gerrit/#/c/66707/

	3

	https://docs.opendaylight.org/projects/netvirt/en/stable-fluorine/specs/oxygen/l3vpn-dual-stack-vms.html

3.3. Exploring IPv6 in Container Networking

This document is the summary of how to use IPv6 with Docker.

The defualt Docker container uses 172.17.0.0/24 subnet with 172.17.0.1 as gateway.
So IPv6 network needs to be enabled and configured before we can use it with IPv6
traffic.

We will describe how to use IPv6 in Docker in the following 5 sections:

	Install Docker Community Edition (CE)

	IPv6 with Docker

	Design Simple IPv6 Topologies

	Design Solutions

	Challenges in Production Use

3.3.1. Install Docker Community Edition (CE)

Step 3.1.1: Download Docker (CE) on your system from “this link” 1.

For Ubuntu 16.04 Xenial x86_64, please refer to “Docker CE for Ubuntu” 2.

Step 3.1.2: Refer to “this link” 3 to install Docker CE on Xenial.

Step 3.1.3: Once you installed the docker, you can verify the standalone
default bridge nework as follows:

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
b9e92f9a8390 bridge bridge local
74160ae686b9 host host local
898fbb0a0c83 my_bridge bridge local
57ac095fdaab none null local

Note that:

	the details may be different with different network drivers.

	User-defined bridge networks are the best when you need multiple containers
to communicate on the same Docker host.

	Host networks are the best when the network stack should not be isolated from
the Docker host, but you want other aspects of the container to be isolated.

	Overlay networks are the best when you need containers running on different
Docker hosts to communicate, or when multiple applications work together
using swarm services.

	Macvlan networks are the best when you are migrating from a VM setup or need
your containers to look like physical hosts on your network, each with a
unique MAC address.

	Third-party network plugins allow you to integrate Docker with specialized
network stacks. Please refer to “Docker Networking Tutorials” 4.

This will have docker0 default bridge details showing
ipv4 172.17.0.1/16 and
ipv6 fe80::42:4dff:fe2f:baa6/64 entries

$ ip addr show
11: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 02:42:4d:2f:ba:a6 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.1/16 scope global docker0
valid_lft forever preferred_lft forever
inet6 fe80::42:4dff:fe2f:baa6/64 scope link
valid_lft forever preferred_lft forever

Thus we see here a simple defult ipv4 networking for docker. Inspect and verify
that IPv6 address is not listed here showing its enabled but not used by
default docker0 bridge.

You can create user defined bridge network using command like my_bridge
below with other than default, e.g. 172.18.0.0/24 here. Note that --ipv6
is not specified yet

$ sudo docker network create \
 --driver=bridge \
 --subnet=172.18.0.0/24 \
 --gaeway= 172.18.0.1 \
 my_bridge

$ docker network inspect bridge
[
 {
 "Name": "bridge",
 "Id": "b9e92f9a839048aab887081876fc214f78e8ce566ef5777303c3ef2cd63ba712",
 "Created": "2017-10-30T23:32:15.676301893-07:00",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "172.17.0.0/16",
 "Gateway": "172.17.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "ea76bd4694a8073b195dd712dd0b070e80a90e97b6e2024b03b711839f4a3546": {
 "Name": "registry",
 "EndpointID": "b04dc6c5d18e3bf4e4201aa8ad2f6ad54a9e2ea48174604029576e136b99c49d",
 "MacAddress": "02:42:ac:11:00:02",
 "IPv4Address": "172.17.0.2/16",
 "IPv6Address": ""
 }
 },
 "Options": {
 "com.docker.network.bridge.default_bridge": "true",
 "com.docker.network.bridge.enable_icc": "true",
 "com.docker.network.bridge.enable_ip_masquerade": "true",
 "com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",
 "com.docker.network.bridge.name": "docker0",
 "com.docker.network.driver.mtu": "1500"
 },
 "Labels": {}
 }
]

$ sudo docker network inspect my_bridge
[
 {
 "Name": "my_bridge",
 "Id": "898fbb0a0c83acc0593897f5af23b1fe680d38b804b0d5a4818a4117ac36498a",
 "Created": "2017-07-16T17:59:55.388151772-07:00",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "172.18.0.0/16",
 "Gateway": "172.18.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {},
 "Options": {},
 "Labels": {}
 }
]

You can note that IPv6 is not enabled here yet as seen through network inspect.
Since we have only IPv4 installed with Docker, we will move to enable IPv6 for
Docker in the next step.

3.3.2. IPv6 with Docker

Verifyig IPv6 with Docker involves the following steps:

Step 3.2.1: Enable ipv6 support for Docker

In the simplest term, the first step is to enable IPv6 on Docker on Linux hosts.
Please refer to “this link” 5:

	Edit /etc/docker/daemon.json

	Set the ipv6 key to true.

{{{ "ipv6": true }}}

Save the file.

Step 3.2.1.1: Set up IPv6 addressing for Docker in daemon.json

If you need IPv6 support for Docker containers, you need to enable the option
on the Docker daemon daemon.json and reload its configuration, before
creating any IPv6 networks or assigning containers IPv6 addresses.

When you create your network, you can specify the --ipv6 flag to enable
IPv6. You can’t selectively disable IPv6 support on the default bridge network.

Step 3.2.1.2: Enable forwarding from Docker containers to the outside world

By default, traffic from containers connected to the default bridge network is
not forwarded to the outside world. To enable forwarding, you need to change
two settings. These are not Docker commands and they affect the Docker host’s
kernel.

	Setting 1: Configure the Linux kernel to allow IP forwarding:

$ sysctl net.ipv4.conf.all.forwarding=1

	Setting 2: Change the policy for the iptables FORWARD policy from DROP to ACCEPT.

$ sudo iptables -P FORWARD ACCEPT

These settings do not persist across a reboot, so you may need to add them to
a start-up script.

Step 3.2.1.3: Use the default bridge network

The default bridge network is considered a legacy detail of Docker and is not
recommended for production use. Configuring it is a manual operation, and it
has technical shortcomings.

Step 3.2.1.4: Connect a container to the default bridge network

If you do not specify a network using the --network flag, and you do
specify a network driver, your container is connected to the default bridge
network by default. Containers connected to the default bridge network can
communicate, but only by IP address, unless they are linked using the legacy
--link flag.

Step 3.2.1.5: Configure the default bridge network

To configure the default bridge network, you specify options in daemon.json.
Here is an example of daemon.json with several options specified. Only
specify the settings you need to customize.

{
 "bip": "192.168.1.5/24",
 "fixed-cidr": "192.168.1.5/25",
 "fixed-cidr-v6": "2001:db8::/64",
 "mtu": 1500,
 "default-gateway": "10.20.1.1",
 "default-gateway-v6": "2001:db8:abcd::89",
 "dns": ["10.20.1.2","10.20.1.3"]
}

Restart Docker for the changes to take effect.

Step 3.2.1.6: Use IPv6 with the default bridge network

If you configure Docker for IPv6 support (see Step 2.1.1), the default
bridge network is also configured for IPv6 automatically. Unlike user-defined
bridges, you cannot selectively disable IPv6 on the default bridge.

Step 3.2.1.7: Reload the Docker configuration file

$ systemctl reload docker

Step 3.2.1.8: You can now create networks with the --ipv6 flag and assign
containers IPv6 addresses.

Step 3.2.1.9: Verify your host and docker networks

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
ea76bd4694a8 registry:2 "/entrypoint.sh /e..." x months ago Up y months 0.0.0.0:4000->5000/tcp registry

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
b9e92f9a8390 bridge bridge local
74160ae686b9 host host local
898fbb0a0c83 my_bridge bridge local
57ac095fdaab none null local

Step 3.2.1.10: Edit /etc/docker/daemon.json and set the ipv6 key to true.

{
 "ipv6": true
}

Save the file.

Step 3.2.1.11: Reload the Docker configuration file.

$ sudo systemctl reload docker

Step 3.2.1.12: You can now create networks with the --ipv6 flag and
assign containers IPv6 addresses using the --ip6 flag.

$ sudo docker network create --ipv6 --driver bridge alpine-net--fixed-cidr-v6 2001:db8:1/64

"docker network create" requires exactly 1 argument(s).
See "docker network create --help"

Earlier, user was allowed to create a network, or start the daemon, without
specifying an IPv6 --subnet, or --fixed-cidr-v6 respectively, even when
using the default builtin IPAM driver, which does not support auto allocation
of IPv6 pools. In another word, it was an incorrect configurations, which had
no effect on IPv6 stuff. It was a no-op.

A fix cleared that so that Docker will now correctly consult with the IPAM
driver to acquire an IPv6 subnet for the bridge network, when user did not
supply one.

If the IPAM driver in use is not able to provide one, network creation would
fail (in this case the default bridge network).

So what you see now is the expected behavior. You need to remove the --ipv6
flag when you start the daemon, unless you pass a --fixed-cidr-v6 pool. We
should probably clarify this somewhere.

The above was found on following Docker.

$ docker info
Containers: 27
Running: 1
Paused: 0
Stopped: 26
Images: 852
Server Version: 17.06.1-ce-rc1
Storage Driver: aufs
 Root Dir: /var/lib/docker/aufs
 Backing Filesystem: extfs
 Dirs: 637
 Dirperm1 Supported: false
Logging Driver: json-file
Cgroup Driver: cgroupfs
Plugins:
 Volume: local
 Network: bridge host macvlan null overlay
 Log: awslogs fluentd gcplogs gelf journald json-file logentries splunk syslog
Swarm: inactive
Runtimes: runc
Default Runtime: runc
Init Binary: docker-init
containerd version: 6e23458c129b551d5c9871e5174f6b1b7f6d1170
runc version: 810190ceaa507aa2727d7ae6f4790c76ec150bd2
init version: 949e6fa
Security Options:
 apparmor
 seccomp
 Profile: default
Kernel Version: 3.13.0-88-generic
Operating System: Ubuntu 16.04.2 LTS
OSType: linux
Architecture: x86_64
CPUs: 4
Total Memory: 11.67GiB
Name: aatiksh
ID: HS5N:T7SK:73MD:NZGR:RJ2G:R76T:NJBR:U5EJ:KP5N:Q3VO:6M2O:62CJ
Docker Root Dir: /var/lib/docker
Debug Mode (client): false
Debug Mode (server): false
Registry: https://index.docker.io/v1/
Experimental: false
Insecure Registries:
 127.0.0.0/8
Live Restore Enabled: false

Step 3.2.2: Check the network drivers

Among the 4 supported drivers, we will be using “User-Defined Bridge Network” 6.

3.3.3. Design Simple IPv6 Topologies

Step 3.3.1: Creating IPv6 user-defined subnet.

Let’s create a Docker with IPv6 subnet:

$ sudo docker network create \
 --ipv6 \
 --driver=bridge \
 --subnet=172.18.0.0/16 \
 --subnet=fcdd:1::/48 \
 --gaeway= 172.20.0.1 \
 my_ipv6_bridge

Error response from daemon:

cannot create network 8957e7881762bbb4b66c3e2102d72b1dc791de37f2cafbaff42bdbf891b54cc3 (br-8957e7881762): conflicts with network
no matching subnet for range 2002:ac14:0000::/48

try changing to ip-addess-range instead of subnet for ipv6.
networks have overlapping IPv4

NETWORK ID NAME DRIVER SCOPE
b9e92f9a8390 bridge bridge local
74160ae686b9 host host local
898fbb0a0c83 my_bridge bridge local
57ac095fdaab none null local
no matching subnet for gateway 172.20.01

So finally making both as subnet and gateway as 172.20.0.1 works

$ sudo docker network create \
 --ipv6 \
 --driver=bridge \
 --subnet=172.20.0.0/16 \
 --subnet=2002:ac14:0000::/48 \
 --gateway=172.20.0.1 \
 my_ipv6_bridge
898fbb0a0c83acc0593897f5af23b1fe680d38b804b0d5a4818a4117ac36498a (br-898fbb0a0c83):

Since lxdbridge used the ip range on the system there was a conflict.
This brings us to question how do we assign IPv6 and IPv6 address for our solutions.

3.3.4. Design Solutions

For best practices, please refer to “Best Practice Document” 7.

Use IPv6 Calcualtor at “this link” 8.

	For IPv4 172.16.0.1 = 6to4 prefix 2002:ac10:0001::/48

	For IPv4 172.17.01/24 = 6to4 prefix 2002:ac11:0001::/48

	For IPv4 172.18.0.1 = 6to4 prefix 2002:ac12:0001::/48

	For IPv4 172.19.0.1 = 6to4 prefix 2002:ac13:0001::/48

	For IPv4 172.20.0.0 = 6to4 prefix 2002:ac14:0000::/48

To avoid overlaping IP’s, let’s use the .20 in our design:

$ sudo docker network create \
 --ipv6 \
 --driver=bridge \
 --subnet=172.20.0.0/24 \
 --subnet=2002:ac14:0000::/48
 --gateway=172.20.0.1
 my_ipv6_bridge

created ...

052da268171ce47685fcdb68951d6d14e70b9099012bac410c663eb2532a0c87

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
b9e92f9a8390 bridge bridge local
74160ae686b9 host host local
898fbb0a0c83 my_bridge bridge local
052da268171c my_ipv6_bridge bridge local
57ac095fdaab none null local

Note the first 16 digits is used here as network id from what we got
whaen we created it.

$ docker network inspect my_ipv6_bridge
[
 {
 "Name": "my_ipv6_bridge",
 "Id": "052da268171ce47685fcdb68951d6d14e70b9099012bac410c663eb2532a0c87",
 "Created": "2018-03-16T07:20:17.714212288-07:00",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": true,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "172.20.0.0/16",
 "Gateway": "172.20.0.1"
 },
 {
 "Subnet": "2002:ac14:0000::/48"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {},
 "Options": {},
 "Labels": {}
 }
]

Note that:

	IPv6 flag is ebnabled and that IPv6 range is listed besides Ipv4 gateway.

	We are mapping IPv4 and IPv6 address to simplify assignments as per “Best
Pratice Document” 7.

Testing the solution and topology:

$ sudo docker run hello-world
Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

	The Docker client contacted the Docker daemon.

	The Docker daemon pulled the “hello-world” image from the Docker Hub.

	The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

	The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

$ docker run -it ubuntu bash

root@62b88b030f5a:/# ls
bin dev home lib64 mnt proc run srv tmp var
boot etc lib media opt root sbin sys usr

On terminal it appears that the docker is functioning normally.

Let’s now push to see if we can use the my_ipv6_bridge network.
Please refer to “User-Defined Bridge Network” 9.

3.3.4.1. Connect a container to a user-defined bridge

When you create a new container, you can specify one or more --network
flags. This example connects a Nginx container to the my-net network. It
also publishes port 80 in the container to port 8080 on the Docker host, so
external clients can access that port. Any other container connected to the
my-net network has access to all ports on the my-nginx container, and vice
versa.

$ docker create --name my-nginx \
 --network my-net \
 --publish 8080:80 \
 nginx:latest

To connect a running container to an existing user-defined bridge, use the
docker network connect command. The following command connects an
already-running my-nginx container to an already-existing my_ipv6_bridge
network:

$ docker network connect my_ipv6_bridge my-nginx

Now we have connected the IPv6-enabled network to mynginx conatiner. Let’s
start and verify its IP Address:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
df1df6ed3efb alpine "ash" 4 hours ago Up 4 hours alpine1
ea76bd4694a8 registry:2 "/entrypoint.sh /e..." 9 months ago Up 4 months 0.0.0.0:4000->5000/tcp registry

The nginx:latest image is not runnung, so let’s start and log into it.

$ docker images | grep latest
REPOSITORY TAG IMAGE ID CREATED SIZE
nginx latest 73acd1f0cfad 2 days ago 109MB
alpine latest 3fd9065eaf02 2 months ago 4.15MB
swaggerapi/swagger-ui latest e0b4f5dd40f9 4 months ago 23.6MB
ubuntu latest d355ed3537e9 8 months ago 119MB
hello-world latest 1815c82652c0 9 months ago 1.84kB

Now we do find the nginx and let`s run it

$ docker run -i -t nginx:latest /bin/bash
root@bc13944d22e1:/# ls
bin dev home lib64 mnt proc run srv tmp var
boot etc lib media opt root sbin sys usr
root@bc13944d22e1:/#

Open another terminal and check the networks and verify that IPv6 address is
listed on the container:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
bc13944d22e1 nginx:latest "/bin/bash" About a minute ago Up About a minute 80/tcp loving_hawking
df1df6ed3efb alpine "ash" 4 hours ago Up 4 hours alpine1
ea76bd4694a8 registry:2 "/entrypoint.sh /e..." 9 months ago Up 4 months 0.0.0.0:4000->5000/tcp registry

$ ping6 bc13944d22e1

On 2nd termoinal

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
b9e92f9a8390 bridge bridge local
74160ae686b9 host host local
898fbb0a0c83 my_bridge bridge local
052da268171c my_ipv6_bridge bridge local
57ac095fdaab none null local

$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eno1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
 link/ether 8c:dc:d4:6e:d5:4b brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.80/24 brd 10.0.0.255 scope global dynamic eno1
 valid_lft 558367sec preferred_lft 558367sec
 inet6 2601:647:4001:739c:b80a:6292:1786:b26/128 scope global dynamic
 valid_lft 86398sec preferred_lft 86398sec
 inet6 fe80::8edc:d4ff:fe6e:d54b/64 scope link
 valid_lft forever preferred_lft forever
11: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
 link/ether 02:42:4d:2f:ba:a6 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 scope global docker0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:4dff:fe2f:baa6/64 scope link
 valid_lft forever preferred_lft forever
20: br-052da268171c: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
 link/ether 02:42:5e:19:55:0d brd ff:ff:ff:ff:ff:ff
 inet 172.20.0.1/16 scope global br-052da268171c
 valid_lft forever preferred_lft forever
 inet6 2002:ac14::1/48 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::42:5eff:fe19:550d/64 scope link
 valid_lft forever preferred_lft forever
 inet6 fe80::1/64 scope link
 valid_lft forever preferred_lft forever

Note that on the 20th entry we have the br-052da268171c with IPv6
inet6 2002:ac14::1/48 scope global, which belongs to root@bc13944d22e1.

At this time we have been able to provide a simple Docker with IPv6 solution.

3.3.4.2. Disconnect a container from a user-defined bridge

If another route needs to be added to nginx, you need to modify the routes:

using ip route commands

$ ip r
default via 10.0.0.1 dev eno1 proto static metric 100
default via 10.0.0.1 dev wlan0 proto static metric 600
10.0.0.0/24 dev eno1 proto kernel scope link src 10.0.0.80
10.0.0.0/24 dev wlan0 proto kernel scope link src 10.0.0.38
10.0.0.0/24 dev eno1 proto kernel scope link src 10.0.0.80 metric 100
10.0.0.0/24 dev wlan0 proto kernel scope link src 10.0.0.38 metric 600
10.0.8.0/24 dev lxdbr0 proto kernel scope link src 10.0.8.1
169.254.0.0/16 dev lxdbr0 scope link metric 1000
172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.0.1
172.18.0.0/16 dev br-898fbb0a0c83 proto kernel scope link src 172.18.0.1
172.20.0.0/16 dev br-052da268171c proto kernel scope link src 172.20.0.1
192.168.99.0/24 dev vboxnet1 proto kernel scope link src 192.168.99.1

If the routes are correctly updated you should be able to see nginx web
page on link http://172.20.0.0.1

We now have completed the exercise.

To disconnect a running container from a user-defined bridge, use the
docker network disconnect command. The following command disconnects the
my-nginx container from the my-net network.

$ docker network disconnect my_ipv6_bridge my-nginx

The IPv6 Docker we used is for demo purpose only. For real production we need
to follow one of the IPv6 solutions we have come across.

3.3.5. Challenges in Production Use

“This link” 10 discusses the details of the use of nftables which
is nextgen iptables, and tries to build production worthy Docker for IPv6
usage.

3.3.6. References

	1

	https://www.docker.com/community-edition#/download

	2

	https://store.docker.com/editions/community/docker-ce-server-ubuntu

	3

	https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-docker-ce-1

	4

	https://docs.docker.com/network/network-tutorial-host/#other-networking-tutorials

	5

	https://docs.docker.com/config/daemon/ipv6/

	6

	https://docs.docker.com/network/

	7(1,2)

	https://networkengineering.stackexchange.com/questions/119/ipv6-address-space-layout-best-practices

	8

	http://www.gestioip.net/cgi-bin/subnet_calculator.cgi

	9

	https://docs.docker.com/network/bridge/#use-ipv6-with-the-default-bridge-network

	10

	https://stephank.nl/p/2017-06-05-ipv6-on-production-docker.html

3.4. ICMPv6 and NDP

ICMP is a control protocol that is considered to be an integral part of IP,
although it is architecturally layered upon IP, i.e., it uses IP to carry its
data end-to-end just as a transport protocol like TCP or UDP does. ICMP
provides error reporting, congestion reporting, and first-hop gateway
redirection.

To communicate on its directly-connected network, a host must implement the
communication protocol used to interface to that network. We call this a link
layer or media-access layer protocol.

IPv4 uses ARP for link and MAC address discovery. In contrast IPv6 uses ICMPv6
though Neighbor Discovery Protocol (NDP). NDP defines five ICMPv6 packet types
for the purpose of router solicitation, router advertisement, neighbor
solicitation, neighbor advertisement, and network redirects.
Refer RFC 122 & 3122.

Contrasting with ARP, NDP includes Neighbor Unreachability Detection (NUD),
thus, improving robustness of packet delivery in the presence of failing
routers or links, or mobile nodes. As long as hosts were using single network
interface, the isolation between local network and remote network was simple.
With requirements of multihoming for hosts with multiple interfaces and
multiple destination packet transfers, the complications of maintaining all
routing to remote gateways has disappeared.

To add container network to local network and IPv6 link local networks and
virtual or logical routing on hosts, the complexity is now exponential.
In order to maintain simplicity of end hosts (physical, virtual or containers),
just maintaining sessions and remote gateways (routers), and maintaining routes
independent of session state is still desirable for scaling internet connected
end hosts.

For more details, please refer to 1.

3.4.1. IPv6-only Containers & Using NDP Proxying

IPv6-only containers will need to fully depend on NDP proxying.

If your Docker host is the only part of an IPv6 subnet but does not have an
IPv6 subnet assigned, you can use NDP Proxying to connect your containers to
the internet via IPv6.

If the host with IPv6 address 2001:db8::c001 is part of the subnet
2001:db8::/64, and your IaaS provider allows you to configure the IPv6
addresses 2001:db8::c000 to 2001:db8::c00f, your network configuration may
look like the following:

$ ip -6 addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
 inet6 2001:db8::c001/64 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::601:3fff:fea1:9c01/64 scope link
 valid_lft forever preferred_lft forever

To split up the configurable address range into two subnets
2001:db8::c000/125 and 2001:db8::c008/125, use the following daemon.json
settings.

{
 "ipv6": true,
 "fixed-cidr-v6": "2001:db8::c008/125"
}

The first subnet will be used by non-Docker processes on the host, and the
second will be used by Docker.

[image: ../../_images/ndp-proxying.png]
Figure: Using NDP Proxying

For more details, please refer to 2.

3.4.2. References

	1

	https://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol

	2

	https://docs.docker.com/v17.09/engine/userguide/networking/default_network/ipv6/#using-ndp-proxying

3.5. Docker IPv6 Simple Cluster Topology

Using external switches or routers allows you to enable IPv6 communication
between containers on different hosts. We have two physical hosts: Host1 &
Host2, and we will study here two scenarios: one with Switch and the other
one with router on the top of hierarchy, connecting those 2 hosts. Both hosts
host a pair of containers in a cluster. The contents are borrowed from
article 1 below, which can be used on any Linux distro (CentOS, Ubuntu,
OpenSUSE etc) with latest kernel. A sample testing is pointed in the blog
article 2 as a variation using ESXi & older Ubuntu 14.04.

3.5.1. Switched Network Environment

Using routable IPv6 addresses allows you to realize communication between
containers on different hosts. Let’s have a look at a simple Docker IPv6
cluster example:

[image: ../../_images/docker-ipv6-cluster-example.png]
Figure 1: An Docker IPv6 Cluster Example

The Docker hosts are in the 2001:db8:0::/64 subnet. Host1 is configured to
provide addresses from the 2001:db8:1::/64 subnet to its containers. It has
three routes configured:

	Route all traffic to 2001:db8:0::/64 via eth0

	Route all traffic to 2001:db8:1::/64 via docker0

	Route all traffic to 2001:db8:2::/64 via Host2 with IP 2001:db8:0::2

Host1 also acts as a router on OSI layer 3. When one of the network clients
tries to contact a target that is specified in Host1’s routing table, Host1
will forward the traffic accordingly. It acts as a router for all networks it
knows: 2001:db8::/64, 2001:db8:1::/64, and 2001:db8:2::/64.

On Host2, we have nearly the same configuration. Host2’s containers will get
IPv6 addresses from 2001:db8:2::/64. Host2 has three routes configured:

	Route all traffic to 2001:db8:0::/64 via eth0

	Route all traffic to 2001:db8:2::/64 via docker0

	Route all traffic to 2001:db8:1::/64 via Host1 with IP 2001:db8:0::1

The difference to Host1 is that the network 2001:db8:2::/64 is directly
attached to Host2 via its docker0 interface, whereas Host2 reaches
2001:db8:1::/64 via Host1’s IPv6 address 2001:db8:0::1.

This way every container can contact every other container. The containers
Container1-* share the same subnet and contact each other directly. The traffic
between Container1-* and Container2-* will be routed via Host1 and Host2
because those containers do not share the same subnet.

In a switched environment every host must know all routes to every subnet.
You always must update the hosts’ routing tables once you add or remove a host
to the cluster.

Every configuration in the diagram that is shown below the dashed line across
hosts is handled by Dockeri, such as the docker0 bridge IP address
configuration, the route to the Docker subnet on the host, the container IP
addresses and the routes on the containers. The configuration above the line
across hosts is up to the user and can be adapted to the individual environment.

3.5.2. Routed Network Environment

In a routed network environment, you replace the layer 2 switch with a layer 3
router. Now the hosts just must know their default gateway (the router) and the
route to their own containers (managed by Docker). The router holds all routing
information about the Docker subnets. When you add or remove a host to this
environment, you just must update the routing table in the router instead of on
every host.

[image: ../../_images/routed-network-environment.png]
Figure 2: A Routed Network Environment

In this scenario, containers of the same host can communicate directly with
each other. The traffic between containers on different hosts will be routed
via their hosts and the router. For example, packet from Container1-1 to
Container2-1 will be routed through Host1, Router, and Host2 until it arrives
at Container2-1.

To keep the IPv6 addresses short in this example a /48 network is assigned
to every host. The hosts use a /64 subnet of this for its own services and
one for Docker. When adding a third host, you would add a route for the subnet
2001:db8:3::/48 in the router and configure Docker on Host3 with
--fixed-cidr-v6=2001:db8:3:1::/64.

Remember the subnet for Docker containers should at least have a size of
/80. This way an IPv6 address can end with the container’s MAC address and
you prevent NDP neighbor cache invalidation issues in the Docker layer. So if
you have a /64 for your whole environment, use /76 subnets for the
hosts and /80 for the containers. This way you can use 4096 hosts with 16
/80 subnets each.

Every configuration in the diagram that is visualized below the dashed line
across hosts is handled by Docker, such as the docker0 bridge IP address
configuration, the route to the Docker subnet on the host, the container IP
addresses and the routes on the containers. The configuration above the line
across hosts is up to the user and can be adapted to the individual environment.

3.5.3. References

	1

	https://docs.docker.com/v17.09/engine/userguide/networking/default_network/ipv6/#docker-ipv6-cluster

	2

	http://www.debug-all.com/?p=128

3.6. Docker IPv6 NAT

3.6.1. What is the Issue with Using IPv6 with Containers?

Initially Docker was not created with IPv6 in mind. It was added later. As a
result, there are still several unresolved issues as to how IPv6 should be used
in a containerized world.

Currently, you can let Docker give each container an IPv6 address from your
(public) pool, but this has disadvantages (Refer to 1):

	Giving each container a publicly routable address means all ports (even
unexposed / unpublished ports) are suddenly reachable by everyone, if no
additional filtering is done.

	By default, each container gets a random IPv6 address, making it impossible
do DNS properly. An alternative is to assign a specific IPv6 address to each
container, but it is still an administrative hassle.

	Published ports won’t work on IPv6, unless you have the userland proxy
enabled (which, for now, is enabled by default in Docker)

	The userland proxy, however, seems to be on its way out and has various
issues, such as:

	It can use a lot of RAM.

	Source IP addresses are rewritten, making it completely unusable for many
purposes, e.g. mail servers.

IPv6 for Docker can (depending on your setup) be pretty much unusable and
completely inconsistent with the way how IPv4 works. Docker images are mostly
designed with IPv4 NAT in mind. NAT provides a layer of security allowing only
published ports through. Letting container link to user-defined networks
provide inter-container communication. This does not go hand in hand with the
way Docker IPv6 works, requiring image maintainers to rethink/adapt their
images with IPv6 in mind.

3.6.2. Why not IPv6 with NAT?

So why not try resolve above issues by managing ip6tables to setup IPv6 NAT
for your containers, like how it is done by the Docker daemon for IPv4. This
requires a locally reserved address like we do for private IP in IPv4. These
are called in IPv6 as local unicast Ipv6 address. Let’s first understand IPv6
addressing scheme.

We note that there are 3 types of IPv6 addresses, and all use last or least
significant 64 bits as Interface ID derived by splitting 48-bit MAC address
into 24 bits + 24 bits and insert an FE00 hexadecimal number in between those
two and inverting the most significant bit to create an equivalent 64-bit MAC
called EUI-64 bit. Refer to 2 for details.

1. Global Unicast Address

This is equivalent to IPv4’s public address with always 001 as Most
Significant bits of Global Routing Prefix. Subnets are 16 opposed to 8 bits
in IPv4.

[image: ../../_images/global-unicast.jpg]

2. Link-Local Address

Link-local addresses are used for communication among IPv6 hosts on a link
(broadcast segment) only. These addresses are not routable. This address always
starts with FE80. These are used for generating IPv6 addresses and 48 bits
following FE80 are always set to 0. Interface ID is usual EUI-64 generated from
MAC address on the NIC.

[image: ../../_images/link-local.jpg]

3. Unique-Local Address

This type of IPv6 address is globally unique & used only in site local
communication. The second half of this address contain Interface ID and the
first half is divided among Prefix, Local Bit, Global ID and Subnet ID.

[image: ../../_images/unique-local.jpg]

Prefix is always set to 1111 110. L bit, is set to 1 if the address is locally
assigned. So far, the meaning of L bit to 0 is not defined. Therefore, Unique
Local IPv6 address always starts with ‘FD’.

IPv6 addresses of all types are assigned to interfaces, not nodes (hosts). An
IPv6 unicast address refers to a single interface. Since each interface belongs
to a single node (host), any of that node’s interfaces’ unicast addresses may
be used as an identifier for the node(host). For IPv6 NAT we prefer site scope
to be within site scope using unique local address, so that they remain private
within the organization.

[image: ../../_images/unicast-scope.jpg]
Figure 1: Scope of IPv6 Unicast Addresses

Based on the IPv6 scope now question arises as what is needed to be mapped to
what? Is it IPv6 to IPv4 or IPv6 to IPv6 with post? Thus, we land up with are
we talking NAT64 with dual stack or just NAT66. Is it a standard that is agreed
upon in IETF RFCs? Dwelling into questions bring us back to should we
complicate life with another docker-ipv6nat?

The conclusion is simple: it is not worth it and it is highly recommended that
you go through the blog listed below 3.

3.6.3. Conclusion

As IPv6 Project team in OPNFV, we recommend that IPv6 NAT is not worth the
effort and should be discouraged. As part of our conclusion, we recommend that
please do not use IPv6 NAT for containers for any NFV use cases.

3.6.4. References

	1

	https://github.com/robbertkl/docker-ipv6nat

	2

	https://www.tutorialspoint.com/ipv6/ipv6_special_addresses.htm

	3

	http://ipv6friday.org/blog/2011/12/ipv6-nat/

Index

IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter

This section provides instructions to set up a service VM as an IPv6 vRouter using OPNFV Colorado Release
installers. The environment may be pure OpenStack option or Open Daylight L2-only option.
The deployment model may be HA or non-HA. The infrastructure may be bare metal or virtual environment.

For complete instructions and documentations of setting up service VM as an IPv6 vRouter using ANY method,
please refer to:

	IPv6 Configuration Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html

	IPv6 User Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

Pre-configuration Activities

The configuration will work in 2 environments:

	OpenStack-only environment

	OpenStack with Open Daylight L2-only environment

Depending on which installer will be used to deploy OPNFV, each environment may be deployed
on bare metal or virtualized infrastructure. Each deployment may be HA or non-HA.

Refer to the previous installer configuration chapters, installations guide and release notes.

Setup Manual in OpenStack-Only Environment

If you intend to set up a service VM as an IPv6 vRouter in OpenStack-only environment of
OPNFV Colorado Release, please NOTE that:

	Because the anti-spoofing rules of Security Group feature in OpenStack prevents
a VM from forwarding packets, we need to disable Security Group feature in the
OpenStack-only environment.

	The hostnames, IP addresses, and username are for exemplary purpose in instructions.
Please change as needed to fit your environment.

	The instructions apply to both deployment model of single controller node and
HA (High Availability) deployment model where multiple controller nodes are used.

Install OPNFV and Preparation

OPNFV-NATIVE-INSTALL-1: To install OpenStack-only environment of OPNFV Colorado Release:

Apex Installer:

HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Non-HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

Non-HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Note:
#
1. Parameter ""-v" is mandatory for Virtual deployment
2. Parameter "-i <inventory file>" is mandatory for Bare Metal deployment
2.1 Refer to https://git.opnfv.org/cgit/apex/tree/config/inventory for examples of inventory file
3. You can use "-n /etc/opnfv-apex/network_setting_v6.yaml" for deployment in IPv6-only infrastructure

Compass Installer:

HA deployment in OpenStack-only environment
export ISO_URL=file://$BUILD_DIRECTORY/compass.iso
export OS_VERSION=${{COMPASS_OS_VERSION}}
export OPENSTACK_VERSION=${{COMPASS_OPENSTACK_VERSION}}
export CONFDIR=$WORKSPACE/deploy/conf/vm_environment
./deploy.sh --dha $CONFDIR/os-nosdn-nofeature-ha.yml \
--network $CONFDIR/$NODE_NAME/network.yml

Non-HA deployment in OpenStack-only environment
Non-HA deployment is currently not supported by Compass installer

Fuel Installer:

HA deployment in OpenStack-only environment
Scenario Name: os-nosdn-nofeature-ha
Scenario Configuration File: ha_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-nosdn-nofeature-ha -i <iso-uri>

Non-HA deployment in OpenStack-only environment
Scenario Name: os-nosdn-nofeature-noha
Scenario Configuration File: no-ha_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-nosdn-nofeature-noha -i <iso-uri>

Note:
#
1. Refer to http://git.opnfv.org/cgit/fuel/tree/deploy/scenario/scenario.yaml for scenarios
2. Refer to http://git.opnfv.org/cgit/fuel/tree/ci/README for description of
stack configuration directory structure
3. <stack-config-uri> is the base URI of stack configuration directory structure
3.1 Example: http://git.opnfv.org/cgit/fuel/tree/deploy/config
4. <lab-name> and <pod-name> must match the directory structure in stack configuration
4.1 Example of <lab-name>: -l devel-pipeline
4.2 Example of <pod-name>: -p elx
5. <iso-uri> could be local or remote ISO image of Fuel Installer
5.1 Example: http://artifacts.opnfv.org/fuel/colorado/opnfv-colorado.1.0.iso
#
Please refer to Fuel Installer's documentation for further information and any update

Joid Installer:

HA deployment in OpenStack-only environment
./deploy.sh -o mitaka -s nosdn -t ha -l default -f ipv6

Non-HA deployment in OpenStack-only environment
./deploy.sh -o mitaka -s nosdn -t nonha -l default -f ipv6

Please NOTE that:

	You need to refer to installer’s documentation for other necessary
parameters applicable to your deployment.

	You need to refer to Release Notes and installer’s documentation if there is
any issue in installation.

OPNFV-NATIVE-INSTALL-2: Clone the following GitHub repository to get the
configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git \
/opt/stack/opnfv_os_ipv6_poc

Disable Security Groups in OpenStack ML2 Setup

Please NOTE that although Security Groups feature has been disabled automatically
through local.conf configuration file by some installers such as devstack, it is very likely
that other installers such as Apex, Compass, Fuel or Joid will enable Security
Groups feature after installation.

Please make sure that Security Groups are disabled in the setup

In order to disable Security Groups globally, please make sure that the settings in
OPNFV-NATIVE-SEC-1 and OPNFV-NATIVE-SEC-2 are applied, if they
are not there by default.

OPNFV-NATIVE-SEC-1: Change the settings in
/etc/neutron/plugins/ml2/ml2_conf.ini as follows, if they are not there by default

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
enable_security_group = True
firewall_driver = neutron.agent.firewall.NoopFirewallDriver
[ml2]
extension_drivers = port_security
[agent]
prevent_arp_spoofing = False

OPNFV-NATIVE-SEC-2: Change the settings in /etc/nova/nova.conf as follows,
if they are not there by default.

/etc/nova/nova.conf
[DEFAULT]
security_group_api = neutron
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OPNFV-NATIVE-SEC-3: After updating the settings, you will have to restart the
Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary
depending on the installer. Please refer to relevant documentation of specific installers

Set Up Service VM as IPv6 vRouter

OPNFV-NATIVE-SETUP-1: Now we assume that OpenStack multi-node setup is up and running.
We have to source the tenant credentials in OpenStack controller node in this step.
Please NOTE that the method of sourcing tenant credentials may vary depending on installers.
For example:

Apex installer:

On jump host, source the tenant credentials using /bin/opnfv-util provided by Apex installer
opnfv-util undercloud "source overcloudrc; keystone service-list"

Alternatively, you can copy the file /home/stack/overcloudrc from the installer VM called "undercloud"
to a location in controller node, for example, in the directory /opt, and do:
source /opt/overcloudrc

Compass installer:

source the tenant credentials using Compass installer of OPNFV
source /opt/admin-openrc.sh

Fuel installer:

source the tenant credentials using Fuel installer of OPNFV
source /root/openrc

Joid installer:

source the tenant credentials using Joid installer of OPNFV
source $HOME/joid_config/admin-openrc

devstack:

source the tenant credentials in devstack
source openrc admin demo

Please refer to relevant documentation of installers if you encounter any issue.

OPNFV-NATIVE-SETUP-2: Download fedora22 image which would be used for vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/\
Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OPNFV-NATIVE-SETUP-3: Import Fedora22 image to glance

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare \
--file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OPNFV-NATIVE-SETUP-4: This step is Informational. OPNFV Installer has taken care of this step
during deployment. You may refer to this step only if there is any issue, or if you are using other installers.

We have to move the physical interface (i.e. the public network interface) to br-ex, including moving
the public IP address and setting up default route. Please refer to OS-NATIVE-SETUP-4 and
OS-NATIVE-SETUP-5 in our more complete instruction [http://artifacts.opnfv.org/ipv6/docs/setupservicevm/5-ipv6-configguide-scenario-1-native-os.html#set-up-service-vm-as-ipv6-vrouter].

OPNFV-NATIVE-SETUP-5: Create Neutron routers ipv4-router and ipv6-router
which need to provide external connectivity.

neutron router-create ipv4-router
neutron router-create ipv6-router

OPNFV-NATIVE-SETUP-6: Create an external network/subnet ext-net using
the appropriate values based on the data-center physical network setup.

Please NOTE that you may only need to create the subnet of ext-net because OPNFV installers
should have created an external network during installation. You must use the same name of external
network that installer creates when you create the subnet. For example:

	Apex installer: external

	Compass installer: ext-net

	Fuel installer: admin_floating_net

	Joid installer: ext-net

Please refer to the documentation of installers if there is any issue

This is needed only if installer does not create an external work
Otherwise, skip this command "net-create"
neutron net-create --router:external ext-net

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,\
end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

OPNFV-NATIVE-SETUP-7: Create Neutron networks ipv4-int-network1 and
ipv6-int-network2 with port_security disabled

neutron net-create ipv4-int-network1
neutron net-create ipv6-int-network2

OPNFV-NATIVE-SETUP-8: Create IPv4 subnet ipv4-int-subnet1 in the internal network
ipv4-int-network1, and associate it to ipv4-router.

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 \
ipv4-int-network1 20.0.0.0/24

neutron router-interface-add ipv4-router ipv4-int-subnet1

OPNFV-NATIVE-SETUP-9: Associate the ext-net to the Neutron routers ipv4-router
and ipv6-router.

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv4-router ext-net
neutron router-gateway-set ipv6-router ext-net

OPNFV-NATIVE-SETUP-10: Create two subnets, one IPv4 subnet ipv4-int-subnet2 and
one IPv6 subnet ipv6-int-subnet2 in ipv6-int-network2, and associate both subnets to
ipv6-router

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 \
ipv6-int-network2 10.0.0.0/24

neutron subnet-create --name ipv6-int-subnet2 --ip-version 6 --ipv6-ra-mode slaac \
--ipv6-address-mode slaac ipv6-int-network2 2001:db8:0:1::/64

neutron router-interface-add ipv6-router ipv4-int-subnet2
neutron router-interface-add ipv6-router ipv6-int-subnet2

OPNFV-NATIVE-SETUP-11: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

OPNFV-NATIVE-SETUP-12: Create ports for vRouter (with some specific MAC address
- basically for automation - to know the IPv6 addresses that would be assigned to the port).

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv6-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1

OPNFV-NATIVE-SETUP-13: Create ports for VM1 and VM2.

neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

OPNFV-NATIVE-SETUP-14: Update ipv6-router with routing information to subnet
2001:db8:0:2::/64

neutron router-update ipv6-router --routes type=dict list=true \
destination=2001:db8:0:2::/64,nexthop=2001:db8:0:1:f816:3eff:fe11:1111

OPNFV-NATIVE-SETUP-15: Boot Service VM (vRouter), VM1 and VM2

nova boot --image Fedora22 --flavor m1.small \
--user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') \
--nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') \
--key-name vRouterKey vRouter

nova list

Please wait for some 10 to 15 minutes so that necessary packages (like radvd)
are installed and vRouter is up.
nova console-log vRouter

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-controller \
--nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') \
--key-name vRouterKey VM1

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') \
--key-name vRouterKey VM2

nova list # Verify that all the VMs are in ACTIVE state.

OPNFV-NATIVE-SETUP-16: If all goes well, the IPv6 addresses assigned to the VMs
would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address:
2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address:
2001:db8:0:2::1/64
VM1 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe44:4444/64

OPNFV-NATIVE-SETUP-17: Now we need to disable eth0-VM1, eth0-VM2,
eth0-vRouter and eth1-vRouter port-security

for port in eth0-VM1 eth0-VM2 eth0-vRouter eth1-vRouter
do
 neutron port-update --no-security-groups $port
 neutron port-update $port --port-security-enabled=False
 neutron port-show $port | grep port_security_enabled
done

OPNFV-NATIVE-SETUP-18: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

Setup Manual in OpenStack with Open Daylight L2-Only Environment

If you intend to set up a service VM as an IPv6 vRouter in an environment of OpenStack
and Open Daylight L2-only of OPNFV Colorado Release, please NOTE that:

	We SHOULD use the odl-ovsdb-openstack version of Open Daylight Boron
in OPNFV Colorado Release. Please refer to our
Gap Analysis [http://artifacts.opnfv.org/ipv6/docs/gapanalysis/gap-analysis-odl-boron.html]
for more information.

	The hostnames, IP addresses, and username are for exemplary purpose in instructions.
Please change as needed to fit your environment.

	The instructions apply to both deployment model of single controller node and
HA (High Availability) deployment model where multiple controller nodes are used.

	However, in case of HA, when ipv6-router is created in step SETUP-SVM-11,
it could be created in any of the controller node. Thus you need to identify in which
controller node ipv6-router is created in order to manually spawn radvd daemon
inside the ipv6-router namespace in steps SETUP-SVM-24 through SETUP-SVM-30.

Install OPNFV and Preparation

OPNFV-INSTALL-1: To install OpenStack with Open Daylight L2-only environment
of OPNFV Colorado Release:

Apex Installer:

HA, Virtual deployment in OpenStack with Open Daylight L2-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

HA, Bare Metal deployment in OpenStack with Open Daylight L2-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Non-HA deployment in OpenStack with Open Daylight L2-only environment
There is no settings file provided by default for odl_l2 non-HA deployment
You need to copy /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml to another file
e.g. /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml
and change the "ha_enabled" parameter to be "false", i.e.: "ha_enabled: false", and:

- For Non-HA, Virtual deployment
./opnfv-deploy -v -d /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

- For Non-HA, Bare Metal deployment
./opnfv-deploy -d /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Note:
#
1. Parameter ""-v" is mandatory for Virtual deployment
2. Parameter "-i <inventory file>" is mandatory for Bare Metal deployment
2.1 Refer to https://git.opnfv.org/cgit/apex/tree/config/inventory for examples of inventory file
3. You can use "-n /etc/opnfv-apex/network_setting_v6.yaml" for deployment in IPv6-only infrastructure

Compass Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
export ISO_URL=file://$BUILD_DIRECTORY/compass.iso
export OS_VERSION=${{COMPASS_OS_VERSION}}
export OPENSTACK_VERSION=${{COMPASS_OPENSTACK_VERSION}}
export CONFDIR=$WORKSPACE/deploy/conf/vm_environment
./deploy.sh --dha $CONFDIR/os-odl_l2-nofeature-ha.yml \
--network $CONFDIR/$NODE_NAME/network.yml

Non-HA deployment in OpenStack with Open Daylight L2-only environment
Non-HA deployment is currently not supported by Compass installer

Fuel Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
Scenario Name: os-odl_l2-nofeature-ha
Scenario Configuration File: ha_odl-l2_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-odl_l2-nofeature-ha -i <iso-uri>

Non-HA deployment in OpenStack with Open Daylight L2-only environment
Scenario Name: os-odl_l2-nofeature-noha
Scenario Configuration File: no-ha_odl-l2_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-odl_l2-nofeature-noha -i <iso-uri>

Note:
#
1. Refer to http://git.opnfv.org/cgit/fuel/tree/deploy/scenario/scenario.yaml for scenarios
2. Refer to http://git.opnfv.org/cgit/fuel/tree/ci/README for description of
stack configuration directory structure
3. <stack-config-uri> is the base URI of stack configuration directory structure
3.1 Example: http://git.opnfv.org/cgit/fuel/tree/deploy/config
4. <lab-name> and <pod-name> must match the directory structure in stack configuration
4.1 Example of <lab-name>: -l devel-pipeline
4.2 Example of <pod-name>: -p elx
5. <iso-uri> could be local or remote ISO image of Fuel Installer
5.1 Example: http://artifacts.opnfv.org/fuel/colorado/opnfv-colorado.1.0.iso
#
Please refer to Fuel Installer's documentation for further information and any update

Joid Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -o mitaka -s odl -t ha -l default -f ipv6

Non-HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -o mitaka -s odl -t nonha -l default -f ipv6

Please NOTE that:

	You need to refer to installer’s documentation for other necessary
parameters applicable to your deployment.

	You need to refer to Release Notes and installer’s documentation if there is
any issue in installation.

OPNFV-INSTALL-2: Clone the following GitHub repository to get the
configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git \
/opt/stack/opnfv_os_ipv6_poc

Disable Security Groups in OpenStack ML2 Setup

Please NOTE that although Security Groups feature has been disabled automatically
through local.conf configuration file by some installers such as devstack, it is very likely
that other installers such as Apex, Compass, Fuel or Joid will enable Security
Groups feature after installation.

Please make sure that Security Groups are disabled in the setup

In order to disable Security Groups globally, please make sure that the settings in
OPNFV-SEC-1 and OPNFV-SEC-2 are applied, if they are not there by default.

OPNFV-SEC-1: Change the settings in
/etc/neutron/plugins/ml2/ml2_conf.ini as follows, if they
are not there by default.

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
enable_security_group = True
firewall_driver = neutron.agent.firewall.NoopFirewallDriver
[ml2]
extension_drivers = port_security
[agent]
prevent_arp_spoofing = False

OPNFV-SEC-2: Change the settings in /etc/nova/nova.conf as follows,
if they are not there by default.

/etc/nova/nova.conf
[DEFAULT]
security_group_api = neutron
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OPNFV-SEC-3: After updating the settings, you will have to restart the
Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary
depending on the installer. Please refer to relevant documentation of specific installers

Source the Credentials in OpenStack Controller Node

SETUP-SVM-1: Login in OpenStack Controller Node. Start a new terminal,
and change directory to where OpenStack is installed.

SETUP-SVM-2: We have to source the tenant credentials in this step. Please NOTE
that the method of sourcing tenant credentials may vary depending on installers. For example:

Apex installer:

On jump host, source the tenant credentials using /bin/opnfv-util provided by Apex installer
opnfv-util undercloud "source overcloudrc; keystone service-list"

Alternatively, you can copy the file /home/stack/overcloudrc from the installer VM called "undercloud"
to a location in controller node, for example, in the directory /opt, and do:
source /opt/overcloudrc

Compass installer:

source the tenant credentials using Compass installer of OPNFV
source /opt/admin-openrc.sh

Fuel installer:

source the tenant credentials using Fuel installer of OPNFV
source /root/openrc

Joid installer:

source the tenant credentials using Joid installer of OPNFV
source $HOME/joid_config/admin-openrc

devstack:

source the tenant credentials in devstack
source openrc admin demo

Please refer to relevant documentation of installers if you encounter any issue.

Informational Note: Move Public Network from Physical Network Interface to br-ex

SETUP-SVM-3: Move the physical interface (i.e. the public network interface) to br-ex

SETUP-SVM-4: Verify setup of br-ex

Those 2 steps are Informational. OPNFV Installer has taken care of those 2 steps during deployment.
You may refer to this step only if there is any issue, or if you are using other installers.

We have to move the physical interface (i.e. the public network interface) to br-ex, including moving
the public IP address and setting up default route. Please refer to SETUP-SVM-3 and
SETUP-SVM-4 in our more complete instruction [http://artifacts.opnfv.org/ipv6/docs/setupservicevm/4-ipv6-configguide-servicevm.html#add-external-connectivity-to-br-ex].

Create IPv4 Subnet and Router with External Connectivity

SETUP-SVM-5: Create a Neutron router ipv4-router which needs to provide external connectivity.

neutron router-create ipv4-router

SETUP-SVM-6: Create an external network/subnet ext-net using the appropriate values based on the
data-center physical network setup.

Please NOTE that you may only need to create the subnet of ext-net because OPNFV installers
should have created an external network during installation. You must use the same name of external
network that installer creates when you create the subnet. For example:

	Apex installer: external

	Compass installer: ext-net

	Fuel installer: admin_floating_net

	Joid installer: ext-net

Please refer to the documentation of installers if there is any issue

This is needed only if installer does not create an external work
Otherwise, skip this command "net-create"
neutron net-create --router:external ext-net

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,\
end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

Please note that the IP addresses in the command above are for exemplary purpose. Please replace the IP addresses of
your actual network.

SETUP-SVM-7: Associate the ext-net to the Neutron router ipv4-router.

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv4-router ext-net

SETUP-SVM-8: Create an internal/tenant IPv4 network ipv4-int-network1

neutron net-create ipv4-int-network1

SETUP-SVM-9: Create an IPv4 subnet ipv4-int-subnet1 in the internal network ipv4-int-network1

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 \
ipv4-int-network1 20.0.0.0/24

SETUP-SVM-10: Associate the IPv4 internal subnet ipv4-int-subnet1 to the Neutron router ipv4-router.

neutron router-interface-add ipv4-router ipv4-int-subnet1

Create IPv6 Subnet and Router with External Connectivity

Now, let us create a second neutron router where we can “manually” spawn a radvd daemon to simulate an external
IPv6 router.

SETUP-SVM-11: Create a second Neutron router ipv6-router which needs to provide external connectivity

neutron router-create ipv6-router

SETUP-SVM-12: Associate the ext-net to the Neutron router ipv6-router

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv6-router ext-net

SETUP-SVM-13: Create a second internal/tenant IPv4 network ipv4-int-network2

neutron net-create ipv4-int-network2

SETUP-SVM-14: Create an IPv4 subnet ipv4-int-subnet2 for the ipv6-router internal network
ipv4-int-network2

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 \
ipv4-int-network2 10.0.0.0/24

SETUP-SVM-15: Associate the IPv4 internal subnet ipv4-int-subnet2 to the Neutron router ipv6-router.

neutron router-interface-add ipv6-router ipv4-int-subnet2

Prepare Image, Metadata and Keypair for Service VM

SETUP-SVM-16: Download fedora22 image which would be used as vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/\
Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare \
--file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

SETUP-SVM-17: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

SETUP-SVM-18: Create ports for vRouter and both the VMs with some specific MAC addresses.

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv4-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1
neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

Boot Service VM (vRouter) with eth0 on ipv4-int-network2 and eth1 on ipv4-int-network1

Let us boot the service VM (vRouter) with eth0 interface on ipv4-int-network2 connecting to ipv6-router,
and eth1 interface on ipv4-int-network1 connecting to ipv4-router.

SETUP-SVM-19: Boot the vRouter using Fedora22 image on the OpenStack Compute Node with hostname
opnfv-os-compute

nova boot --image Fedora22 --flavor m1.small \
--user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') \
--nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') \
--key-name vRouterKey vRouter

Please note that /opt/stack/opnfv_os_ipv6_poc/metadata.txt is used to enable the vRouter to automatically
spawn a radvd, and

	Act as an IPv6 vRouter which advertises the RA (Router Advertisements) with prefix
2001:db8:0:2::/64 on its internal interface (eth1).

	Forward IPv6 traffic from internal interface (eth1)

SETUP-SVM-20: Verify that Fedora22 image boots up successfully and vRouter has ssh keys properly injected

nova list
nova console-log vRouter

Please note that it may take a few minutes for the necessary packages to get installed and ssh keys
to be injected.

Sample Output
[762.884523] cloud-init[871]: ec2: ###
[762.909634] cloud-init[871]: ec2: -----BEGIN SSH HOST KEY FINGERPRINTS-----
[762.931626] cloud-init[871]: ec2: 2048 e3:dc:3d:4a:bc:b6:b0:77:75:a1:70:a3:d0:2a:47:a9 (RSA)
[762.957380] cloud-init[871]: ec2: -----END SSH HOST KEY FINGERPRINTS-----
[762.979554] cloud-init[871]: ec2: ###

Boot Two Other VMs in ipv4-int-network1

In order to verify that the setup is working, let us create two cirros VMs with eth1 interface on the
ipv4-int-network1, i.e., connecting to vRouter eth1 interface for internal network.

We will have to configure appropriate mtu on the VMs’ interface by taking into account the tunneling
overhead and any physical switch requirements. If so, push the mtu to the VM either using dhcp
options or via meta-data.

SETUP-SVM-21: Create VM1 on OpenStack Controller Node with hostname opnfv-os-controller

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-controller \
--nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') \
--key-name vRouterKey VM1

SETUP-SVM-22: Create VM2 on OpenStack Compute Node with hostname opnfv-os-compute

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') \
--key-name vRouterKey VM2

SETUP-SVM-23: Confirm that both the VMs are successfully booted.

nova list
nova console-log VM1
nova console-log VM2

Spawn RADVD in ipv6-router

Let us manually spawn a radvd daemon inside ipv6-router namespace to simulate an external router.
First of all, we will have to identify the ipv6-router namespace and move to the namespace.

Please NOTE that in case of HA (High Availability) deployment model where multiple controller
nodes are used, ipv6-router created in step SETUP-SVM-11 could be in any of the controller
node. Thus you need to identify in which controller node ipv6-router is created in order to manually
spawn radvd daemon inside the ipv6-router namespace in steps SETUP-SVM-24 through
SETUP-SVM-30. The following command in Neutron will display the controller on which the
ipv6-router is spawned.

neutron l3-agent-list-hosting-router ipv6-router

Then you login to that controller and execute steps SETUP-SVM-24
through SETUP-SVM-30

SETUP-SVM-24: identify the ipv6-router namespace and move to the namespace

sudo ip netns exec qrouter-$(neutron router-list | grep -w ipv6-router | \
awk '{print $2}') bash

SETUP-SVM-25: Upon successful execution of the above command, you will be in the router namespace.
Now let us configure the IPv6 address on the <qr-xxx> interface.

export router_interface=$(ip a s | grep -w "global qr-*" | awk '{print $7}')
ip -6 addr add 2001:db8:0:1::1 dev $router_interface

SETUP-SVM-26: Update the sample file /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf
with $router_interface.

cp /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf /tmp/radvd.$router_interface.conf
sed -i 's/$router_interface/'$router_interface'/g' /tmp/radvd.$router_interface.conf

SETUP-SVM-27: Spawn a radvd daemon to simulate an external router. This radvd daemon advertises an IPv6
subnet prefix of 2001:db8:0:1::/64 using RA (Router Advertisement) on its $router_interface so that eth0
interface of vRouter automatically configures an IPv6 SLAAC address.

$radvd -C /tmp/radvd.$router_interface.conf -p /tmp/br-ex.pid.radvd -m syslog

SETUP-SVM-28: Add an IPv6 downstream route pointing to the eth0 interface of vRouter.

ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111

SETUP-SVM-29: The routing table should now look similar to something shown below.

ip -6 route show
2001:db8:0:1::1 dev qr-42968b9e-62 proto kernel metric 256
2001:db8:0:1::/64 dev qr-42968b9e-62 proto kernel metric 256 expires 86384sec
2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111 dev qr-42968b9e-62 proto ra metric 1024 expires 29sec
fe80::/64 dev qg-3736e0c7-7c proto kernel metric 256
fe80::/64 dev qr-42968b9e-62 proto kernel metric 256

SETUP-SVM-30: If all goes well, the IPv6 addresses assigned to the VMs would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address:
2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address:
2001:db8:0:2::1/64
VM1 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe44:4444/64

Testing to Verify Setup Complete

Now, let us SSH to those VMs, e.g. VM1 and / or VM2 and / or vRouter, to confirm that
it has successfully configured the IPv6 address using SLAAC with prefix
2001:db8:0:2::/64 from vRouter.

We use floatingip mechanism to achieve SSH.

SETUP-SVM-31: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

If everything goes well, ssh will be successful and you will be logged into those VMs.
Run some commands to verify that IPv6 addresses are configured on eth0 interface.

SETUP-SVM-32: Show an IPv6 address with a prefix of 2001:db8:0:2::/64

ip address show

SETUP-SVM-33: ping some external IPv6 address, e.g. ipv6-router

ping6 2001:db8:0:1::1

If the above ping6 command succeeds, it implies that vRouter was able to successfully forward the IPv6 traffic
to reach external ipv6-router.

IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter

This section provides instructions to set up a service VM as an IPv6 vRouter using OPNFV Colorado Release
installers. The environment may be pure OpenStack option or Open Daylight L2-only option.
The deployment model may be HA or non-HA. The infrastructure may be bare metal or virtual environment.

For complete instructions and documentations of setting up service VM as an IPv6 vRouter using ANY method,
please refer to:

	IPv6 Configuration Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html

	IPv6 User Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

Pre-configuration Activities

The configuration will work in 2 environments:

	OpenStack-only environment

	OpenStack with Open Daylight L2-only environment

Depending on which installer will be used to deploy OPNFV, each environment may be deployed
on bare metal or virtualized infrastructure. Each deployment may be HA or non-HA.

Refer to the previous installer configuration chapters, installations guide and release notes.

Setup Manual in OpenStack-Only Environment

If you intend to set up a service VM as an IPv6 vRouter in OpenStack-only environment of
OPNFV Colorado Release, please NOTE that:

	Because the anti-spoofing rules of Security Group feature in OpenStack prevents
a VM from forwarding packets, we need to disable Security Group feature in the
OpenStack-only environment.

	The hostnames, IP addresses, and username are for exemplary purpose in instructions.
Please change as needed to fit your environment.

	The instructions apply to both deployment model of single controller node and
HA (High Availability) deployment model where multiple controller nodes are used.

Install OPNFV and Preparation

OPNFV-NATIVE-INSTALL-1: To install OpenStack-only environment of OPNFV Colorado Release:

Apex Installer:

HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Non-HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

Non-HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Note:
#
1. Parameter ""-v" is mandatory for Virtual deployment
2. Parameter "-i <inventory file>" is mandatory for Bare Metal deployment
2.1 Refer to https://git.opnfv.org/cgit/apex/tree/config/inventory for examples of inventory file
3. You can use "-n /etc/opnfv-apex/network_setting_v6.yaml" for deployment in IPv6-only infrastructure

Compass Installer:

HA deployment in OpenStack-only environment
export ISO_URL=file://$BUILD_DIRECTORY/compass.iso
export OS_VERSION=${{COMPASS_OS_VERSION}}
export OPENSTACK_VERSION=${{COMPASS_OPENSTACK_VERSION}}
export CONFDIR=$WORKSPACE/deploy/conf/vm_environment
./deploy.sh --dha $CONFDIR/os-nosdn-nofeature-ha.yml \
--network $CONFDIR/$NODE_NAME/network.yml

Non-HA deployment in OpenStack-only environment
Non-HA deployment is currently not supported by Compass installer

Fuel Installer:

HA deployment in OpenStack-only environment
Scenario Name: os-nosdn-nofeature-ha
Scenario Configuration File: ha_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-nosdn-nofeature-ha -i <iso-uri>

Non-HA deployment in OpenStack-only environment
Scenario Name: os-nosdn-nofeature-noha
Scenario Configuration File: no-ha_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-nosdn-nofeature-noha -i <iso-uri>

Note:
#
1. Refer to http://git.opnfv.org/cgit/fuel/tree/deploy/scenario/scenario.yaml for scenarios
2. Refer to http://git.opnfv.org/cgit/fuel/tree/ci/README for description of
stack configuration directory structure
3. <stack-config-uri> is the base URI of stack configuration directory structure
3.1 Example: http://git.opnfv.org/cgit/fuel/tree/deploy/config
4. <lab-name> and <pod-name> must match the directory structure in stack configuration
4.1 Example of <lab-name>: -l devel-pipeline
4.2 Example of <pod-name>: -p elx
5. <iso-uri> could be local or remote ISO image of Fuel Installer
5.1 Example: http://artifacts.opnfv.org/fuel/colorado/opnfv-colorado.1.0.iso
#
Please refer to Fuel Installer's documentation for further information and any update

Joid Installer:

HA deployment in OpenStack-only environment
./deploy.sh -o mitaka -s nosdn -t ha -l default -f ipv6

Non-HA deployment in OpenStack-only environment
./deploy.sh -o mitaka -s nosdn -t nonha -l default -f ipv6

Please NOTE that:

	You need to refer to installer’s documentation for other necessary
parameters applicable to your deployment.

	You need to refer to Release Notes and installer’s documentation if there is
any issue in installation.

OPNFV-NATIVE-INSTALL-2: Clone the following GitHub repository to get the
configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git \
/opt/stack/opnfv_os_ipv6_poc

Disable Security Groups in OpenStack ML2 Setup

Please NOTE that although Security Groups feature has been disabled automatically
through local.conf configuration file by some installers such as devstack, it is very likely
that other installers such as Apex, Compass, Fuel or Joid will enable Security
Groups feature after installation.

Please make sure that Security Groups are disabled in the setup

In order to disable Security Groups globally, please make sure that the settings in
OPNFV-NATIVE-SEC-1 and OPNFV-NATIVE-SEC-2 are applied, if they
are not there by default.

OPNFV-NATIVE-SEC-1: Change the settings in
/etc/neutron/plugins/ml2/ml2_conf.ini as follows, if they are not there by default

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
enable_security_group = True
firewall_driver = neutron.agent.firewall.NoopFirewallDriver
[ml2]
extension_drivers = port_security
[agent]
prevent_arp_spoofing = False

OPNFV-NATIVE-SEC-2: Change the settings in /etc/nova/nova.conf as follows,
if they are not there by default.

/etc/nova/nova.conf
[DEFAULT]
security_group_api = neutron
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OPNFV-NATIVE-SEC-3: After updating the settings, you will have to restart the
Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary
depending on the installer. Please refer to relevant documentation of specific installers

Set Up Service VM as IPv6 vRouter

OPNFV-NATIVE-SETUP-1: Now we assume that OpenStack multi-node setup is up and running.
We have to source the tenant credentials in OpenStack controller node in this step.
Please NOTE that the method of sourcing tenant credentials may vary depending on installers.
For example:

Apex installer:

On jump host, source the tenant credentials using /bin/opnfv-util provided by Apex installer
opnfv-util undercloud "source overcloudrc; keystone service-list"

Alternatively, you can copy the file /home/stack/overcloudrc from the installer VM called "undercloud"
to a location in controller node, for example, in the directory /opt, and do:
source /opt/overcloudrc

Compass installer:

source the tenant credentials using Compass installer of OPNFV
source /opt/admin-openrc.sh

Fuel installer:

source the tenant credentials using Fuel installer of OPNFV
source /root/openrc

Joid installer:

source the tenant credentials using Joid installer of OPNFV
source $HOME/joid_config/admin-openrc

devstack:

source the tenant credentials in devstack
source openrc admin demo

Please refer to relevant documentation of installers if you encounter any issue.

OPNFV-NATIVE-SETUP-2: Download fedora22 image which would be used for vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/\
Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OPNFV-NATIVE-SETUP-3: Import Fedora22 image to glance

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare \
--file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OPNFV-NATIVE-SETUP-4: This step is Informational. OPNFV Installer has taken care of this step
during deployment. You may refer to this step only if there is any issue, or if you are using other installers.

We have to move the physical interface (i.e. the public network interface) to br-ex, including moving
the public IP address and setting up default route. Please refer to OS-NATIVE-SETUP-4 and
OS-NATIVE-SETUP-5 in our more complete instruction [http://artifacts.opnfv.org/ipv6/docs/setupservicevm/5-ipv6-configguide-scenario-1-native-os.html#set-up-service-vm-as-ipv6-vrouter].

OPNFV-NATIVE-SETUP-5: Create Neutron routers ipv4-router and ipv6-router
which need to provide external connectivity.

neutron router-create ipv4-router
neutron router-create ipv6-router

OPNFV-NATIVE-SETUP-6: Create an external network/subnet ext-net using
the appropriate values based on the data-center physical network setup.

Please NOTE that you may only need to create the subnet of ext-net because OPNFV installers
should have created an external network during installation. You must use the same name of external
network that installer creates when you create the subnet. For example:

	Apex installer: external

	Compass installer: ext-net

	Fuel installer: admin_floating_net

	Joid installer: ext-net

Please refer to the documentation of installers if there is any issue

This is needed only if installer does not create an external work
Otherwise, skip this command "net-create"
neutron net-create --router:external ext-net

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,\
end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

OPNFV-NATIVE-SETUP-7: Create Neutron networks ipv4-int-network1 and
ipv6-int-network2 with port_security disabled

neutron net-create ipv4-int-network1
neutron net-create ipv6-int-network2

OPNFV-NATIVE-SETUP-8: Create IPv4 subnet ipv4-int-subnet1 in the internal network
ipv4-int-network1, and associate it to ipv4-router.

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 \
ipv4-int-network1 20.0.0.0/24

neutron router-interface-add ipv4-router ipv4-int-subnet1

OPNFV-NATIVE-SETUP-9: Associate the ext-net to the Neutron routers ipv4-router
and ipv6-router.

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv4-router ext-net
neutron router-gateway-set ipv6-router ext-net

OPNFV-NATIVE-SETUP-10: Create two subnets, one IPv4 subnet ipv4-int-subnet2 and
one IPv6 subnet ipv6-int-subnet2 in ipv6-int-network2, and associate both subnets to
ipv6-router

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 \
ipv6-int-network2 10.0.0.0/24

neutron subnet-create --name ipv6-int-subnet2 --ip-version 6 --ipv6-ra-mode slaac \
--ipv6-address-mode slaac ipv6-int-network2 2001:db8:0:1::/64

neutron router-interface-add ipv6-router ipv4-int-subnet2
neutron router-interface-add ipv6-router ipv6-int-subnet2

OPNFV-NATIVE-SETUP-11: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

OPNFV-NATIVE-SETUP-12: Create ports for vRouter (with some specific MAC address
- basically for automation - to know the IPv6 addresses that would be assigned to the port).

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv6-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1

OPNFV-NATIVE-SETUP-13: Create ports for VM1 and VM2.

neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

OPNFV-NATIVE-SETUP-14: Update ipv6-router with routing information to subnet
2001:db8:0:2::/64

neutron router-update ipv6-router --routes type=dict list=true \
destination=2001:db8:0:2::/64,nexthop=2001:db8:0:1:f816:3eff:fe11:1111

OPNFV-NATIVE-SETUP-15: Boot Service VM (vRouter), VM1 and VM2

nova boot --image Fedora22 --flavor m1.small \
--user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') \
--nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') \
--key-name vRouterKey vRouter

nova list

Please wait for some 10 to 15 minutes so that necessary packages (like radvd)
are installed and vRouter is up.
nova console-log vRouter

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-controller \
--nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') \
--key-name vRouterKey VM1

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') \
--key-name vRouterKey VM2

nova list # Verify that all the VMs are in ACTIVE state.

OPNFV-NATIVE-SETUP-16: If all goes well, the IPv6 addresses assigned to the VMs
would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address:
2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address:
2001:db8:0:2::1/64
VM1 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe44:4444/64

OPNFV-NATIVE-SETUP-17: Now we need to disable eth0-VM1, eth0-VM2,
eth0-vRouter and eth1-vRouter port-security

for port in eth0-VM1 eth0-VM2 eth0-vRouter eth1-vRouter
do
 neutron port-update --no-security-groups $port
 neutron port-update $port --port-security-enabled=False
 neutron port-show $port | grep port_security_enabled
done

OPNFV-NATIVE-SETUP-18: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

Setup Manual in OpenStack with Open Daylight L2-Only Environment

If you intend to set up a service VM as an IPv6 vRouter in an environment of OpenStack
and Open Daylight L2-only of OPNFV Colorado Release, please NOTE that:

	We SHOULD use the odl-ovsdb-openstack version of Open Daylight Boron
in OPNFV Colorado Release. Please refer to our
Gap Analysis [http://artifacts.opnfv.org/ipv6/docs/gapanalysis/gap-analysis-odl-boron.html]
for more information.

	The hostnames, IP addresses, and username are for exemplary purpose in instructions.
Please change as needed to fit your environment.

	The instructions apply to both deployment model of single controller node and
HA (High Availability) deployment model where multiple controller nodes are used.

	However, in case of HA, when ipv6-router is created in step SETUP-SVM-11,
it could be created in any of the controller node. Thus you need to identify in which
controller node ipv6-router is created in order to manually spawn radvd daemon
inside the ipv6-router namespace in steps SETUP-SVM-24 through SETUP-SVM-30.

Install OPNFV and Preparation

OPNFV-INSTALL-1: To install OpenStack with Open Daylight L2-only environment
of OPNFV Colorado Release:

Apex Installer:

HA, Virtual deployment in OpenStack with Open Daylight L2-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

HA, Bare Metal deployment in OpenStack with Open Daylight L2-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Non-HA deployment in OpenStack with Open Daylight L2-only environment
There is no settings file provided by default for odl_l2 non-HA deployment
You need to copy /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml to another file
e.g. /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml
and change the "ha_enabled" parameter to be "false", i.e.: "ha_enabled: false", and:

- For Non-HA, Virtual deployment
./opnfv-deploy -v -d /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

- For Non-HA, Bare Metal deployment
./opnfv-deploy -d /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Note:
#
1. Parameter ""-v" is mandatory for Virtual deployment
2. Parameter "-i <inventory file>" is mandatory for Bare Metal deployment
2.1 Refer to https://git.opnfv.org/cgit/apex/tree/config/inventory for examples of inventory file
3. You can use "-n /etc/opnfv-apex/network_setting_v6.yaml" for deployment in IPv6-only infrastructure

Compass Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
export ISO_URL=file://$BUILD_DIRECTORY/compass.iso
export OS_VERSION=${{COMPASS_OS_VERSION}}
export OPENSTACK_VERSION=${{COMPASS_OPENSTACK_VERSION}}
export CONFDIR=$WORKSPACE/deploy/conf/vm_environment
./deploy.sh --dha $CONFDIR/os-odl_l2-nofeature-ha.yml \
--network $CONFDIR/$NODE_NAME/network.yml

Non-HA deployment in OpenStack with Open Daylight L2-only environment
Non-HA deployment is currently not supported by Compass installer

Fuel Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
Scenario Name: os-odl_l2-nofeature-ha
Scenario Configuration File: ha_odl-l2_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-odl_l2-nofeature-ha -i <iso-uri>

Non-HA deployment in OpenStack with Open Daylight L2-only environment
Scenario Name: os-odl_l2-nofeature-noha
Scenario Configuration File: no-ha_odl-l2_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-odl_l2-nofeature-noha -i <iso-uri>

Note:
#
1. Refer to http://git.opnfv.org/cgit/fuel/tree/deploy/scenario/scenario.yaml for scenarios
2. Refer to http://git.opnfv.org/cgit/fuel/tree/ci/README for description of
stack configuration directory structure
3. <stack-config-uri> is the base URI of stack configuration directory structure
3.1 Example: http://git.opnfv.org/cgit/fuel/tree/deploy/config
4. <lab-name> and <pod-name> must match the directory structure in stack configuration
4.1 Example of <lab-name>: -l devel-pipeline
4.2 Example of <pod-name>: -p elx
5. <iso-uri> could be local or remote ISO image of Fuel Installer
5.1 Example: http://artifacts.opnfv.org/fuel/colorado/opnfv-colorado.1.0.iso
#
Please refer to Fuel Installer's documentation for further information and any update

Joid Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -o mitaka -s odl -t ha -l default -f ipv6

Non-HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -o mitaka -s odl -t nonha -l default -f ipv6

Please NOTE that:

	You need to refer to installer’s documentation for other necessary
parameters applicable to your deployment.

	You need to refer to Release Notes and installer’s documentation if there is
any issue in installation.

OPNFV-INSTALL-2: Clone the following GitHub repository to get the
configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git \
/opt/stack/opnfv_os_ipv6_poc

Disable Security Groups in OpenStack ML2 Setup

Please NOTE that although Security Groups feature has been disabled automatically
through local.conf configuration file by some installers such as devstack, it is very likely
that other installers such as Apex, Compass, Fuel or Joid will enable Security
Groups feature after installation.

Please make sure that Security Groups are disabled in the setup

In order to disable Security Groups globally, please make sure that the settings in
OPNFV-SEC-1 and OPNFV-SEC-2 are applied, if they are not there by default.

OPNFV-SEC-1: Change the settings in
/etc/neutron/plugins/ml2/ml2_conf.ini as follows, if they
are not there by default.

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
enable_security_group = True
firewall_driver = neutron.agent.firewall.NoopFirewallDriver
[ml2]
extension_drivers = port_security
[agent]
prevent_arp_spoofing = False

OPNFV-SEC-2: Change the settings in /etc/nova/nova.conf as follows,
if they are not there by default.

/etc/nova/nova.conf
[DEFAULT]
security_group_api = neutron
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OPNFV-SEC-3: After updating the settings, you will have to restart the
Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary
depending on the installer. Please refer to relevant documentation of specific installers

Source the Credentials in OpenStack Controller Node

SETUP-SVM-1: Login in OpenStack Controller Node. Start a new terminal,
and change directory to where OpenStack is installed.

SETUP-SVM-2: We have to source the tenant credentials in this step. Please NOTE
that the method of sourcing tenant credentials may vary depending on installers. For example:

Apex installer:

On jump host, source the tenant credentials using /bin/opnfv-util provided by Apex installer
opnfv-util undercloud "source overcloudrc; keystone service-list"

Alternatively, you can copy the file /home/stack/overcloudrc from the installer VM called "undercloud"
to a location in controller node, for example, in the directory /opt, and do:
source /opt/overcloudrc

Compass installer:

source the tenant credentials using Compass installer of OPNFV
source /opt/admin-openrc.sh

Fuel installer:

source the tenant credentials using Fuel installer of OPNFV
source /root/openrc

Joid installer:

source the tenant credentials using Joid installer of OPNFV
source $HOME/joid_config/admin-openrc

devstack:

source the tenant credentials in devstack
source openrc admin demo

Please refer to relevant documentation of installers if you encounter any issue.

Informational Note: Move Public Network from Physical Network Interface to br-ex

SETUP-SVM-3: Move the physical interface (i.e. the public network interface) to br-ex

SETUP-SVM-4: Verify setup of br-ex

Those 2 steps are Informational. OPNFV Installer has taken care of those 2 steps during deployment.
You may refer to this step only if there is any issue, or if you are using other installers.

We have to move the physical interface (i.e. the public network interface) to br-ex, including moving
the public IP address and setting up default route. Please refer to SETUP-SVM-3 and
SETUP-SVM-4 in our more complete instruction [http://artifacts.opnfv.org/ipv6/docs/setupservicevm/4-ipv6-configguide-servicevm.html#add-external-connectivity-to-br-ex].

Create IPv4 Subnet and Router with External Connectivity

SETUP-SVM-5: Create a Neutron router ipv4-router which needs to provide external connectivity.

neutron router-create ipv4-router

SETUP-SVM-6: Create an external network/subnet ext-net using the appropriate values based on the
data-center physical network setup.

Please NOTE that you may only need to create the subnet of ext-net because OPNFV installers
should have created an external network during installation. You must use the same name of external
network that installer creates when you create the subnet. For example:

	Apex installer: external

	Compass installer: ext-net

	Fuel installer: admin_floating_net

	Joid installer: ext-net

Please refer to the documentation of installers if there is any issue

This is needed only if installer does not create an external work
Otherwise, skip this command "net-create"
neutron net-create --router:external ext-net

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,\
end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

Please note that the IP addresses in the command above are for exemplary purpose. Please replace the IP addresses of
your actual network.

SETUP-SVM-7: Associate the ext-net to the Neutron router ipv4-router.

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv4-router ext-net

SETUP-SVM-8: Create an internal/tenant IPv4 network ipv4-int-network1

neutron net-create ipv4-int-network1

SETUP-SVM-9: Create an IPv4 subnet ipv4-int-subnet1 in the internal network ipv4-int-network1

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 \
ipv4-int-network1 20.0.0.0/24

SETUP-SVM-10: Associate the IPv4 internal subnet ipv4-int-subnet1 to the Neutron router ipv4-router.

neutron router-interface-add ipv4-router ipv4-int-subnet1

Create IPv6 Subnet and Router with External Connectivity

Now, let us create a second neutron router where we can “manually” spawn a radvd daemon to simulate an external
IPv6 router.

SETUP-SVM-11: Create a second Neutron router ipv6-router which needs to provide external connectivity

neutron router-create ipv6-router

SETUP-SVM-12: Associate the ext-net to the Neutron router ipv6-router

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv6-router ext-net

SETUP-SVM-13: Create a second internal/tenant IPv4 network ipv4-int-network2

neutron net-create ipv4-int-network2

SETUP-SVM-14: Create an IPv4 subnet ipv4-int-subnet2 for the ipv6-router internal network
ipv4-int-network2

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 \
ipv4-int-network2 10.0.0.0/24

SETUP-SVM-15: Associate the IPv4 internal subnet ipv4-int-subnet2 to the Neutron router ipv6-router.

neutron router-interface-add ipv6-router ipv4-int-subnet2

Prepare Image, Metadata and Keypair for Service VM

SETUP-SVM-16: Download fedora22 image which would be used as vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/\
Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare \
--file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

SETUP-SVM-17: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

SETUP-SVM-18: Create ports for vRouter and both the VMs with some specific MAC addresses.

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv4-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1
neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

Boot Service VM (vRouter) with eth0 on ipv4-int-network2 and eth1 on ipv4-int-network1

Let us boot the service VM (vRouter) with eth0 interface on ipv4-int-network2 connecting to ipv6-router,
and eth1 interface on ipv4-int-network1 connecting to ipv4-router.

SETUP-SVM-19: Boot the vRouter using Fedora22 image on the OpenStack Compute Node with hostname
opnfv-os-compute

nova boot --image Fedora22 --flavor m1.small \
--user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') \
--nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') \
--key-name vRouterKey vRouter

Please note that /opt/stack/opnfv_os_ipv6_poc/metadata.txt is used to enable the vRouter to automatically
spawn a radvd, and

	Act as an IPv6 vRouter which advertises the RA (Router Advertisements) with prefix
2001:db8:0:2::/64 on its internal interface (eth1).

	Forward IPv6 traffic from internal interface (eth1)

SETUP-SVM-20: Verify that Fedora22 image boots up successfully and vRouter has ssh keys properly injected

nova list
nova console-log vRouter

Please note that it may take a few minutes for the necessary packages to get installed and ssh keys
to be injected.

Sample Output
[762.884523] cloud-init[871]: ec2: ###
[762.909634] cloud-init[871]: ec2: -----BEGIN SSH HOST KEY FINGERPRINTS-----
[762.931626] cloud-init[871]: ec2: 2048 e3:dc:3d:4a:bc:b6:b0:77:75:a1:70:a3:d0:2a:47:a9 (RSA)
[762.957380] cloud-init[871]: ec2: -----END SSH HOST KEY FINGERPRINTS-----
[762.979554] cloud-init[871]: ec2: ###

Boot Two Other VMs in ipv4-int-network1

In order to verify that the setup is working, let us create two cirros VMs with eth1 interface on the
ipv4-int-network1, i.e., connecting to vRouter eth1 interface for internal network.

We will have to configure appropriate mtu on the VMs’ interface by taking into account the tunneling
overhead and any physical switch requirements. If so, push the mtu to the VM either using dhcp
options or via meta-data.

SETUP-SVM-21: Create VM1 on OpenStack Controller Node with hostname opnfv-os-controller

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-controller \
--nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') \
--key-name vRouterKey VM1

SETUP-SVM-22: Create VM2 on OpenStack Compute Node with hostname opnfv-os-compute

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') \
--key-name vRouterKey VM2

SETUP-SVM-23: Confirm that both the VMs are successfully booted.

nova list
nova console-log VM1
nova console-log VM2

Spawn RADVD in ipv6-router

Let us manually spawn a radvd daemon inside ipv6-router namespace to simulate an external router.
First of all, we will have to identify the ipv6-router namespace and move to the namespace.

Please NOTE that in case of HA (High Availability) deployment model where multiple controller
nodes are used, ipv6-router created in step SETUP-SVM-11 could be in any of the controller
node. Thus you need to identify in which controller node ipv6-router is created in order to manually
spawn radvd daemon inside the ipv6-router namespace in steps SETUP-SVM-24 through
SETUP-SVM-30. The following command in Neutron will display the controller on which the
ipv6-router is spawned.

neutron l3-agent-list-hosting-router ipv6-router

Then you login to that controller and execute steps SETUP-SVM-24
through SETUP-SVM-30

SETUP-SVM-24: identify the ipv6-router namespace and move to the namespace

sudo ip netns exec qrouter-$(neutron router-list | grep -w ipv6-router | \
awk '{print $2}') bash

SETUP-SVM-25: Upon successful execution of the above command, you will be in the router namespace.
Now let us configure the IPv6 address on the <qr-xxx> interface.

export router_interface=$(ip a s | grep -w "global qr-*" | awk '{print $7}')
ip -6 addr add 2001:db8:0:1::1 dev $router_interface

SETUP-SVM-26: Update the sample file /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf
with $router_interface.

cp /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf /tmp/radvd.$router_interface.conf
sed -i 's/$router_interface/'$router_interface'/g' /tmp/radvd.$router_interface.conf

SETUP-SVM-27: Spawn a radvd daemon to simulate an external router. This radvd daemon advertises an IPv6
subnet prefix of 2001:db8:0:1::/64 using RA (Router Advertisement) on its $router_interface so that eth0
interface of vRouter automatically configures an IPv6 SLAAC address.

$radvd -C /tmp/radvd.$router_interface.conf -p /tmp/br-ex.pid.radvd -m syslog

SETUP-SVM-28: Add an IPv6 downstream route pointing to the eth0 interface of vRouter.

ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111

SETUP-SVM-29: The routing table should now look similar to something shown below.

ip -6 route show
2001:db8:0:1::1 dev qr-42968b9e-62 proto kernel metric 256
2001:db8:0:1::/64 dev qr-42968b9e-62 proto kernel metric 256 expires 86384sec
2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111 dev qr-42968b9e-62 proto ra metric 1024 expires 29sec
fe80::/64 dev qg-3736e0c7-7c proto kernel metric 256
fe80::/64 dev qr-42968b9e-62 proto kernel metric 256

SETUP-SVM-30: If all goes well, the IPv6 addresses assigned to the VMs would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address:
2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address:
2001:db8:0:2::1/64
VM1 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe44:4444/64

Testing to Verify Setup Complete

Now, let us SSH to those VMs, e.g. VM1 and / or VM2 and / or vRouter, to confirm that
it has successfully configured the IPv6 address using SLAAC with prefix
2001:db8:0:2::/64 from vRouter.

We use floatingip mechanism to achieve SSH.

SETUP-SVM-31: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

If everything goes well, ssh will be successful and you will be logged into those VMs.
Run some commands to verify that IPv6 addresses are configured on eth0 interface.

SETUP-SVM-32: Show an IPv6 address with a prefix of 2001:db8:0:2::/64

ip address show

SETUP-SVM-33: ping some external IPv6 address, e.g. ipv6-router

ping6 2001:db8:0:1::1

If the above ping6 command succeeds, it implies that vRouter was able to successfully forward the IPv6 traffic
to reach external ipv6-router.

IPv6 Post Installation Procedures

Congratulations, you have completed the setup of using a service VM to act as an IPv6 vRouter.
You have validated the setup based on the instruction in previous sections. If you want to further
test your setup, you can ping6 among VM1, VM2, vRouter and ipv6-router.

This setup allows further open innovation by any 3rd-party. For more instructions and documentations,
please refer to:

	IPv6 Configuration Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html

	IPv6 User Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

Automated post installation activities

Refer to the relevant testing guides, results, and release notes of Yardstick Project.

IPv6 Post Installation Procedures

Congratulations, you have completed the setup of using a service VM to act as an IPv6 vRouter.
You have validated the setup based on the instruction in previous sections. If you want to further
test your setup, you can ping6 among VM1, VM2, vRouter and ipv6-router.

This setup allows further open innovation by any 3rd-party. For more instructions and documentations,
please refer to:

	IPv6 Configuration Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html

	IPv6 User Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

Automated post installation activities

Refer to the relevant testing guides, results, and release notes of Yardstick Project.

IPv6 Gap Analysis with Open Daylight Beryllium

This section provides users with IPv6 gap analysis regarding feature requirement with
Open Daylight Beryllium Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with Open Daylight Beryllium Official Release.

	Use Case / Requirement

	Supported in ODL Beryllium

	Notes

	REST API support for IPv6 subnet creation in ODL

	Yes

	Yes, it is possible to create IPv6 subnets in ODL using Neutron REST API.

For a network which has both IPv4 and IPv6 subnets, ODL mechanism driver
will send the port information which includes IPv4/v6 addresses to ODL
Neutron northbound API. When port information is queried it displays IPv4
and IPv6 addresses. However, in Beryllium release, ODL net-virt provider
does not support IPv6 features (i.e., the actual functionality is missing
and would be available only in the later releases of ODL).

	IPv6 Router support in ODL

	Communication between VMs on same compute node

	Communication between VMs on different compute nodes
(east-west)

	External routing (north-south)

	No

	ODL net-virt provider in Beryllium release only supports IPv4 Router.

In the meantime, if IPv6 Routing is necessary, we can use ODL for L2
connectivity and Neutron L3 agent for IPv4/v6 routing.

	IPAM: Support for IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	No

	Although it is possible to create different types of IPv6 subnets in ODL,
ODL_L3 would have to implement the IPv6 Router that can send out Router
Advertisements based on the IPv6 addressing mode. Router Advertisement
is also necessary for VMs to configure the default route.

	When using ODL for L2 forwarding/tunneling, it is compatible
with IPv6.

	Yes

	

	Full support for IPv6 matching (i.e., IPv6, ICMPv6, TCP, UDP)
in security groups. Ability to control and manage all IPv6
security group capabilities via Neutron/Nova API (REST and
CLI) as well as via Horizon.

	No

	Security Groups for IPv6 is a work in progress.

	Shared Networks support

	No

	ODL currently assumes a single tenant to network mapping and does not
support shared networks among tenants.

	IPv6 external L2 VLAN directly attached to a VM.

	ToDo

	

	ODL on an IPv6 only Infrastructure.

	ToDo

	Deploying OpenStack with ODL on an IPv6 only infrastructure where the API
endpoints are all IPv6 addresses.

2. IPv6 Gap Analysis with Open Daylight Boron

This section provides users with IPv6 gap analysis regarding feature requirement with
Open Daylight Boron Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with Open Daylight Boron Official Release.

Open Daylight Boron Status

There are 2 options in Open Daylight Boron to provide Virtualized Networks:

	1 Old Netvirt: netvirt implementation used in Open Daylight Beryllium Release

	identified by feature odl-ovsdb-openstack

	2 New Netvirt: netvirt implementation which will replace the Old Netvirt in the

	future releases based on a more modular design. It is identified by feature
odl-netvirt-openstack

	Use Case / Requirement

	Supported in ODL Boron

	Notes

	
Old Netvirt

(odl-ovsdb-openstack)

	
New Netvirt

(odl-netvirt-openstack)

	REST API support for IPv6 subnet creation in ODL

	Yes

	Yes

	Yes, it is possible to create IPv6 subnets in ODL using
Neutron REST API.

For a network which has both IPv4 and IPv6 subnets, ODL
mechanism driver will send the port information which includes
IPv4/v6 addresses to ODL Neutron northbound API. When port
information is queried it displays IPv4 and IPv6 addresses.

	IPv6 Router support in ODL

	Communication between VMs on same compute node

	Communication between VMs on different compute
nodes (east-west)

	External routing (north-south)

	No

	Partial

	IPv6 Router support is work in progress in ODL.

Currently communication between VMs on the same network is
supported, and the support for the other modes is work in
progress.

	IPAM: Support for IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	No

	Yes

	ODL IPv6 Router supports all the IPv6 Address assignment modes
along with Neutron DHCP Agent.

	When using ODL for L2 forwarding/tunneling, it is
compatible with IPv6.

	Yes

	Yes

	

	Full support for IPv6 matching (i.e. IPv6, ICMPv6,
TCP, UDP) in security groups. Ability to control
and manage all IPv6 security group capabilities
via Neutron/Nova API (REST and CLI) as well as via
Horizon

	Partial

	Partial

	Security Groups for IPv6 is a work in progress, and some
partial support is available.

	Shared Networks support

	Yes

	Yes

	

	IPv6 external L2 VLAN directly attached to a VM.

	ToDo

	ToDo

	

	ODL on an IPv6 only Infrastructure.

	No

	Work in Progress

	Deploying OpenStack with ODL on an IPv6 only infrastructure
where the API endpoints are all IPv6 addresses.

IPv6 Gap Analysis with OpenStack Liberty

This section provides users with IPv6 gap analysis regarding feature requirement with
OpenStack Neutron in Liberty Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with OpenStack Neutron in Liberty Official Release.

	Use Case / Requirement

	Supported in Liberty

	Notes

	All topologies work in a multi-tenant environment

	Yes

	The IPv6 design is following the Neutron tenant networks model;
dnsmasq is being used inside DHCP network namespaces, while radvd
is being used inside Neutron routers namespaces to provide full
isolation between tenants. Tenant isolation can be based on VLANs,
GRE, or VXLAN encapsulation. In case of overlays, the transport
network (and VTEPs) must be IPv4 based as of today.

	IPv6 VM to VM only

	Yes

	It is possible to assign IPv6-only addresses to VMs. Both switching
(within VMs on the same tenant network) as well as east/west routing
(between different networks of the same tenant) are supported.

	IPv6 external L2 VLAN directly attached to a VM

	Yes

	IPv6 provider network model; RA messages from upstream (external)
router are forwarded into the VMs

	IPv6 subnet routed via L3 agent to an external IPv6 network

	Both VLAN and overlay (e.g. GRE, VXLAN) subnet attached
to VMs;

	Must be able to support multiple L3 agents for a given
external network to support scaling (neutron scheduler
to assign vRouters to the L3 agents)

	
	Yes

	Yes

	Configuration is enhanced since Kilo to allow easier setup of the
upstream gateway, without the user being forced to create an IPv6
subnet for the external network.

	Ability for a NIC to support both IPv4 and IPv6 (dual
stack) address.

	VM with a single interface associated with a network,
which is then associated with two subnets.

	VM with two different interfaces associated with two
different networks and two different subnets.

	
	Yes

	Yes

	Dual-stack is supported in Neutron with the addition of
Multiple IPv6 Prefixes Blueprint

	Support IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	
	Yes

	Yes

	Yes

	

	Ability to create a port on an IPv6 DHCPv6 Stateful subnet
and assign a specific IPv6 address to the port and have it
taken out of the DHCP address pool.

	Yes

	

	Ability to create a port with fixed_ip for a
SLAAC/DHCPv6-Stateless Subnet.

	No

	The following patch disables this operation:
https://review.openstack.org/#/c/129144/

	Support for private IPv6 to external IPv6 floating IP;
Ability to specify floating IPs via Neutron API (REST and
CLI) as well as via Horizon, including combination of
IPv6/IPv4 and IPv4/IPv6 floating IPs if implemented.

	Rejected

	Blueprint proposed in upstream and got rejected. General expectation
is to avoid NAT with IPv6 by assigning GUA to tenant VMs. See
https://review.openstack.org/#/c/139731/ for discussion.

	Provide IPv6/IPv4 feature parity in support for
pass-through capabilities (e.g., SR-IOV).

	To-Do

	The L3 configuration should be transparent for the SR-IOV
implementation. SR-IOV networking support introduced in Juno based
on the sriovnicswitch ML2 driver is expected to work with IPv4
and IPv6 enabled VMs. We need to verify if it works or not.

	Additional IPv6 extensions, for example: IPSEC, IPv6
Anycast, Multicast

	No

	It does not appear to be considered yet (lack of clear requirements)

	VM access to the meta-data server to obtain user data, SSH
keys, etc. using cloud-init with IPv6 only interfaces.

	No

	This is currently not supported. Config-drive or dual-stack IPv4 /
IPv6 can be used as a workaround (so that the IPv4 network is used
to obtain connectivity with the metadata service)

	Full support for IPv6 matching (i.e., IPv6, ICMPv6, TCP,
UDP) in security groups. Ability to control and manage all
IPv6 security group capabilities via Neutron/Nova API (REST
and CLI) as well as via Horizon.

	Yes

	

	During network/subnet/router create, there should be an
option to allow user to specify the type of address
management they would like. This includes all options
including those low priority if implemented (e.g., toggle
on/off router and address prefix advertisements); It must
be supported via Neutron API (REST and CLI) as well as via
Horizon

	Yes

	Two new Subnet attributes were introduced to control IPv6 address
assignment options:

	ipv6-ra-mode: to determine who sends Router Advertisements;

	ipv6-address-mode: to determine how VM obtains IPv6 address,
default gateway, and/or optional information.

	Security groups anti-spoofing: Prevent VM from using a
source IPv6/MAC address which is not assigned to the VM

	Yes

	

	Protect tenant and provider network from rogue RAs

	Yes

	When using a tenant network, Neutron is going to automatically
handle the filter rules to allow connectivity of RAs to the VMs only
from the Neutron router port; with provider networks, users are
required to specify the LLA of the upstream router during the subnet
creation, or otherwise manually edit the security-groups rules to
allow incoming traffic from this specific address.

	Support the ability to assign multiple IPv6 addresses to
an interface; both for Neutron router interfaces and VM
interfaces.

	Yes

	

	Ability for a VM to support a mix of multiple IPv4 and IPv6
networks, including multiples of the same type.

	Yes

	

	Support for IPv6 Prefix Delegation.

	Yes

	Partial support in Liberty

	Distributed Virtual Routing (DVR) support for IPv6

	No

	Blueprint proposed upstream, pending discussion.

	IPv6 First-Hop Security, IPv6 ND spoofing

	Yes

	

	IPv6 support in Neutron Layer3 High Availability
(keepalived+VRRP).

	Yes

	

1. IPv6 Gap Analysis with OpenStack Mitaka

This section provides users with IPv6 gap analysis regarding feature requirement with
OpenStack Neutron in Mitaka Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with OpenStack Neutron in Mitaka Official Release.

	Use Case / Requirement

	Supported in Mitaka

	Notes

	All topologies work in a multi-tenant environment

	Yes

	The IPv6 design is following the Neutron tenant networks model;
dnsmasq is being used inside DHCP network namespaces, while radvd
is being used inside Neutron routers namespaces to provide full
isolation between tenants. Tenant isolation can be based on VLANs,
GRE, or VXLAN encapsulation. In case of overlays, the transport
network (and VTEPs) must be IPv4 based as of today.

	IPv6 VM to VM only

	Yes

	It is possible to assign IPv6-only addresses to VMs. Both switching
(within VMs on the same tenant network) as well as east/west routing
(between different networks of the same tenant) are supported.

	IPv6 external L2 VLAN directly attached to a VM

	Yes

	IPv6 provider network model; RA messages from upstream (external)
router are forwarded into the VMs

	IPv6 subnet routed via L3 agent to an external IPv6 network

	Both VLAN and overlay (e.g. GRE, VXLAN) subnet attached
to VMs;

	Must be able to support multiple L3 agents for a given
external network to support scaling (neutron scheduler
to assign vRouters to the L3 agents)

	
	Yes

	Yes

	Configuration is enhanced since Kilo to allow easier setup of the
upstream gateway, without the user being forced to create an IPv6
subnet for the external network.

	Ability for a NIC to support both IPv4 and IPv6 (dual
stack) address.

	VM with a single interface associated with a network,
which is then associated with two subnets.

	VM with two different interfaces associated with two
different networks and two different subnets.

	
	Yes

	Yes

	Dual-stack is supported in Neutron with the addition of
Multiple IPv6 Prefixes Blueprint

	Support IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	
	Yes

	Yes

	Yes

	

	Ability to create a port on an IPv6 DHCPv6 Stateful subnet
and assign a specific IPv6 address to the port and have it
taken out of the DHCP address pool.

	Yes

	

	Ability to create a port with fixed_ip for a
SLAAC/DHCPv6-Stateless Subnet.

	No

	The following patch disables this operation:
https://review.openstack.org/#/c/129144/

	Support for private IPv6 to external IPv6 floating IP;
Ability to specify floating IPs via Neutron API (REST and
CLI) as well as via Horizon, including combination of
IPv6/IPv4 and IPv4/IPv6 floating IPs if implemented.

	Rejected

	Blueprint proposed in upstream and got rejected. General expectation
is to avoid NAT with IPv6 by assigning GUA to tenant VMs. See
https://review.openstack.org/#/c/139731/ for discussion.

	Provide IPv6/IPv4 feature parity in support for
pass-through capabilities (e.g., SR-IOV).

	To-Do

	The L3 configuration should be transparent for the SR-IOV
implementation. SR-IOV networking support introduced in Juno based
on the sriovnicswitch ML2 driver is expected to work with IPv4
and IPv6 enabled VMs. We need to verify if it works or not.

	Additional IPv6 extensions, for example: IPSEC, IPv6
Anycast, Multicast

	No

	It does not appear to be considered yet (lack of clear requirements)

	VM access to the meta-data server to obtain user data, SSH
keys, etc. using cloud-init with IPv6 only interfaces.

	No

	This is currently not supported. Config-drive or dual-stack IPv4 /
IPv6 can be used as a workaround (so that the IPv4 network is used
to obtain connectivity with the metadata service)

	Full support for IPv6 matching (i.e., IPv6, ICMPv6, TCP,
UDP) in security groups. Ability to control and manage all
IPv6 security group capabilities via Neutron/Nova API (REST
and CLI) as well as via Horizon.

	Yes

	

	During network/subnet/router create, there should be an
option to allow user to specify the type of address
management they would like. This includes all options
including those low priority if implemented (e.g., toggle
on/off router and address prefix advertisements); It must
be supported via Neutron API (REST and CLI) as well as via
Horizon

	Yes

	Two new Subnet attributes were introduced to control IPv6 address
assignment options:

	ipv6-ra-mode: to determine who sends Router Advertisements;

	ipv6-address-mode: to determine how VM obtains IPv6 address,
default gateway, and/or optional information.

	Security groups anti-spoofing: Prevent VM from using a
source IPv6/MAC address which is not assigned to the VM

	Yes

	

	Protect tenant and provider network from rogue RAs

	Yes

	When using a tenant network, Neutron is going to automatically
handle the filter rules to allow connectivity of RAs to the VMs only
from the Neutron router port; with provider networks, users are
required to specify the LLA of the upstream router during the subnet
creation, or otherwise manually edit the security-groups rules to
allow incoming traffic from this specific address.

	Support the ability to assign multiple IPv6 addresses to
an interface; both for Neutron router interfaces and VM
interfaces.

	Yes

	

	Ability for a VM to support a mix of multiple IPv4 and IPv6
networks, including multiples of the same type.

	Yes

	

	Support for IPv6 Prefix Delegation.

	Yes

	Partial support in Mitaka

	Distributed Virtual Routing (DVR) support for IPv6

	No

	Blueprint proposed upstream, pending discussion.

	IPv6 First-Hop Security, IPv6 ND spoofing

	Yes

	

	IPv6 support in Neutron Layer3 High Availability
(keepalived+VRRP).

	Yes

	

IPv6 Gap Analysis

	Project

	IPv6, http://wiki.opnfv.org/ipv6_opnfv_project

	Editors

	Bin Hu (AT&T), Sridhar Gaddam (RedHat)

	Authors

	Sridhar Gaddam (RedHat), Bin Hu (AT&T)

	Abstract

	

This document provides the users with top-down gap analysis regarding IPv6 feature requirements with
OpenStack Mitaka Official Release and Open Daylight Boron Official Release.

	1. IPv6 Gap Analysis with OpenStack Mitaka

	2. IPv6 Gap Analysis with Open Daylight Boron

2. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter

This section provides instructions to set up a service VM as an IPv6 vRouter using OPNFV Colorado Release
installers. The environment may be pure OpenStack option or Open Daylight L2-only option.
The deployment model may be HA or non-HA. The infrastructure may be bare metal or virtual environment.

For complete instructions and documentations of setting up service VM as an IPv6 vRouter using ANY method,
please refer to:

	IPv6 Configuration Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html

	IPv6 User Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

2.1. Pre-configuration Activities

The configuration will work in 2 environments:

	OpenStack-only environment

	OpenStack with Open Daylight L2-only environment

Depending on which installer will be used to deploy OPNFV, each environment may be deployed
on bare metal or virtualized infrastructure. Each deployment may be HA or non-HA.

Refer to the previous installer configuration chapters, installations guide and release notes.

2.2. Setup Manual in OpenStack-Only Environment

If you intend to set up a service VM as an IPv6 vRouter in OpenStack-only environment of
OPNFV Colorado Release, please NOTE that:

	Because the anti-spoofing rules of Security Group feature in OpenStack prevents
a VM from forwarding packets, we need to disable Security Group feature in the
OpenStack-only environment.

	The hostnames, IP addresses, and username are for exemplary purpose in instructions.
Please change as needed to fit your environment.

	The instructions apply to both deployment model of single controller node and
HA (High Availability) deployment model where multiple controller nodes are used.

2.2.1. Install OPNFV and Preparation

OPNFV-NATIVE-INSTALL-1: To install OpenStack-only environment of OPNFV Colorado Release:

Apex Installer:

HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Non-HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

Non-HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Note:
#
1. Parameter ""-v" is mandatory for Virtual deployment
2. Parameter "-i <inventory file>" is mandatory for Bare Metal deployment
2.1 Refer to https://git.opnfv.org/cgit/apex/tree/config/inventory for examples of inventory file
3. You can use "-n /etc/opnfv-apex/network_setting_v6.yaml" for deployment in IPv6-only infrastructure

Compass Installer:

HA deployment in OpenStack-only environment
export ISO_URL=file://$BUILD_DIRECTORY/compass.iso
export OS_VERSION=${{COMPASS_OS_VERSION}}
export OPENSTACK_VERSION=${{COMPASS_OPENSTACK_VERSION}}
export CONFDIR=$WORKSPACE/deploy/conf/vm_environment
./deploy.sh --dha $CONFDIR/os-nosdn-nofeature-ha.yml \
--network $CONFDIR/$NODE_NAME/network.yml

Non-HA deployment in OpenStack-only environment
Non-HA deployment is currently not supported by Compass installer

Fuel Installer:

HA deployment in OpenStack-only environment
Scenario Name: os-nosdn-nofeature-ha
Scenario Configuration File: ha_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-nosdn-nofeature-ha -i <iso-uri>

Non-HA deployment in OpenStack-only environment
Scenario Name: os-nosdn-nofeature-noha
Scenario Configuration File: no-ha_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-nosdn-nofeature-noha -i <iso-uri>

Note:
#
1. Refer to http://git.opnfv.org/cgit/fuel/tree/deploy/scenario/scenario.yaml for scenarios
2. Refer to http://git.opnfv.org/cgit/fuel/tree/ci/README for description of
stack configuration directory structure
3. <stack-config-uri> is the base URI of stack configuration directory structure
3.1 Example: http://git.opnfv.org/cgit/fuel/tree/deploy/config
4. <lab-name> and <pod-name> must match the directory structure in stack configuration
4.1 Example of <lab-name>: -l devel-pipeline
4.2 Example of <pod-name>: -p elx
5. <iso-uri> could be local or remote ISO image of Fuel Installer
5.1 Example: http://artifacts.opnfv.org/fuel/colorado/opnfv-colorado.1.0.iso
#
Please refer to Fuel Installer's documentation for further information and any update

Joid Installer:

HA deployment in OpenStack-only environment
./deploy.sh -o mitaka -s nosdn -t ha -l default -f ipv6

Non-HA deployment in OpenStack-only environment
./deploy.sh -o mitaka -s nosdn -t nonha -l default -f ipv6

Please NOTE that:

	You need to refer to installer’s documentation for other necessary
parameters applicable to your deployment.

	You need to refer to Release Notes and installer’s documentation if there is
any issue in installation.

OPNFV-NATIVE-INSTALL-2: Clone the following GitHub repository to get the
configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git \
/opt/stack/opnfv_os_ipv6_poc

2.2.2. Disable Security Groups in OpenStack ML2 Setup

Please NOTE that although Security Groups feature has been disabled automatically
through local.conf configuration file by some installers such as devstack, it is very likely
that other installers such as Apex, Compass, Fuel or Joid will enable Security
Groups feature after installation.

Please make sure that Security Groups are disabled in the setup

In order to disable Security Groups globally, please make sure that the settings in
OPNFV-NATIVE-SEC-1 and OPNFV-NATIVE-SEC-2 are applied, if they
are not there by default.

OPNFV-NATIVE-SEC-1: Change the settings in
/etc/neutron/plugins/ml2/ml2_conf.ini as follows, if they are not there by default

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
enable_security_group = True
firewall_driver = neutron.agent.firewall.NoopFirewallDriver
[ml2]
extension_drivers = port_security
[agent]
prevent_arp_spoofing = False

OPNFV-NATIVE-SEC-2: Change the settings in /etc/nova/nova.conf as follows,
if they are not there by default.

/etc/nova/nova.conf
[DEFAULT]
security_group_api = neutron
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OPNFV-NATIVE-SEC-3: After updating the settings, you will have to restart the
Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary
depending on the installer. Please refer to relevant documentation of specific installers

2.2.3. Set Up Service VM as IPv6 vRouter

OPNFV-NATIVE-SETUP-1: Now we assume that OpenStack multi-node setup is up and running.
We have to source the tenant credentials in OpenStack controller node in this step.
Please NOTE that the method of sourcing tenant credentials may vary depending on installers.
For example:

Apex installer:

On jump host, source the tenant credentials using /bin/opnfv-util provided by Apex installer
opnfv-util undercloud "source overcloudrc; keystone service-list"

Alternatively, you can copy the file /home/stack/overcloudrc from the installer VM called "undercloud"
to a location in controller node, for example, in the directory /opt, and do:
source /opt/overcloudrc

Compass installer:

source the tenant credentials using Compass installer of OPNFV
source /opt/admin-openrc.sh

Fuel installer:

source the tenant credentials using Fuel installer of OPNFV
source /root/openrc

Joid installer:

source the tenant credentials using Joid installer of OPNFV
source $HOME/joid_config/admin-openrc

devstack:

source the tenant credentials in devstack
source openrc admin demo

Please refer to relevant documentation of installers if you encounter any issue.

OPNFV-NATIVE-SETUP-2: Download fedora22 image which would be used for vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/\
Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OPNFV-NATIVE-SETUP-3: Import Fedora22 image to glance

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare \
--file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OPNFV-NATIVE-SETUP-4: This step is Informational. OPNFV Installer has taken care of this step
during deployment. You may refer to this step only if there is any issue, or if you are using other installers.

We have to move the physical interface (i.e. the public network interface) to br-ex, including moving
the public IP address and setting up default route. Please refer to OS-NATIVE-SETUP-4 and
OS-NATIVE-SETUP-5 in our more complete instruction [http://artifacts.opnfv.org/ipv6/docs/setupservicevm/5-ipv6-configguide-scenario-1-native-os.html#set-up-service-vm-as-ipv6-vrouter].

OPNFV-NATIVE-SETUP-5: Create Neutron routers ipv4-router and ipv6-router
which need to provide external connectivity.

neutron router-create ipv4-router
neutron router-create ipv6-router

OPNFV-NATIVE-SETUP-6: Create an external network/subnet ext-net using
the appropriate values based on the data-center physical network setup.

Please NOTE that you may only need to create the subnet of ext-net because OPNFV installers
should have created an external network during installation. You must use the same name of external
network that installer creates when you create the subnet. For example:

	Apex installer: external

	Compass installer: ext-net

	Fuel installer: admin_floating_net

	Joid installer: ext-net

Please refer to the documentation of installers if there is any issue

This is needed only if installer does not create an external work
Otherwise, skip this command "net-create"
neutron net-create --router:external ext-net

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,\
end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

OPNFV-NATIVE-SETUP-7: Create Neutron networks ipv4-int-network1 and
ipv6-int-network2 with port_security disabled

neutron net-create ipv4-int-network1
neutron net-create ipv6-int-network2

OPNFV-NATIVE-SETUP-8: Create IPv4 subnet ipv4-int-subnet1 in the internal network
ipv4-int-network1, and associate it to ipv4-router.

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 \
ipv4-int-network1 20.0.0.0/24

neutron router-interface-add ipv4-router ipv4-int-subnet1

OPNFV-NATIVE-SETUP-9: Associate the ext-net to the Neutron routers ipv4-router
and ipv6-router.

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv4-router ext-net
neutron router-gateway-set ipv6-router ext-net

OPNFV-NATIVE-SETUP-10: Create two subnets, one IPv4 subnet ipv4-int-subnet2 and
one IPv6 subnet ipv6-int-subnet2 in ipv6-int-network2, and associate both subnets to
ipv6-router

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 \
ipv6-int-network2 10.0.0.0/24

neutron subnet-create --name ipv6-int-subnet2 --ip-version 6 --ipv6-ra-mode slaac \
--ipv6-address-mode slaac ipv6-int-network2 2001:db8:0:1::/64

neutron router-interface-add ipv6-router ipv4-int-subnet2
neutron router-interface-add ipv6-router ipv6-int-subnet2

OPNFV-NATIVE-SETUP-11: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

OPNFV-NATIVE-SETUP-12: Create ports for vRouter (with some specific MAC address
- basically for automation - to know the IPv6 addresses that would be assigned to the port).

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv6-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1

OPNFV-NATIVE-SETUP-13: Create ports for VM1 and VM2.

neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

OPNFV-NATIVE-SETUP-14: Update ipv6-router with routing information to subnet
2001:db8:0:2::/64

neutron router-update ipv6-router --routes type=dict list=true \
destination=2001:db8:0:2::/64,nexthop=2001:db8:0:1:f816:3eff:fe11:1111

OPNFV-NATIVE-SETUP-15: Boot Service VM (vRouter), VM1 and VM2

nova boot --image Fedora22 --flavor m1.small \
--user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') \
--nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') \
--key-name vRouterKey vRouter

nova list

Please wait for some 10 to 15 minutes so that necessary packages (like radvd)
are installed and vRouter is up.
nova console-log vRouter

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-controller \
--nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') \
--key-name vRouterKey VM1

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') \
--key-name vRouterKey VM2

nova list # Verify that all the VMs are in ACTIVE state.

OPNFV-NATIVE-SETUP-16: If all goes well, the IPv6 addresses assigned to the VMs
would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address:
2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address:
2001:db8:0:2::1/64
VM1 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe44:4444/64

OPNFV-NATIVE-SETUP-17: Now we need to disable eth0-VM1, eth0-VM2,
eth0-vRouter and eth1-vRouter port-security

for port in eth0-VM1 eth0-VM2 eth0-vRouter eth1-vRouter
do
 neutron port-update --no-security-groups $port
 neutron port-update $port --port-security-enabled=False
 neutron port-show $port | grep port_security_enabled
done

OPNFV-NATIVE-SETUP-18: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

2.3. Setup Manual in OpenStack with Open Daylight L2-Only Environment

If you intend to set up a service VM as an IPv6 vRouter in an environment of OpenStack
and Open Daylight L2-only of OPNFV Colorado Release, please NOTE that:

	We SHOULD use the odl-ovsdb-openstack version of Open Daylight Boron
in OPNFV Colorado Release. Please refer to our
Gap Analysis [http://artifacts.opnfv.org/ipv6/docs/gapanalysis/gap-analysis-odl-boron.html]
for more information.

	The hostnames, IP addresses, and username are for exemplary purpose in instructions.
Please change as needed to fit your environment.

	The instructions apply to both deployment model of single controller node and
HA (High Availability) deployment model where multiple controller nodes are used.

	However, in case of HA, when ipv6-router is created in step SETUP-SVM-11,
it could be created in any of the controller node. Thus you need to identify in which
controller node ipv6-router is created in order to manually spawn radvd daemon
inside the ipv6-router namespace in steps SETUP-SVM-24 through SETUP-SVM-30.

2.3.1. Install OPNFV and Preparation

OPNFV-INSTALL-1: To install OpenStack with Open Daylight L2-only environment
of OPNFV Colorado Release:

Apex Installer:

HA, Virtual deployment in OpenStack with Open Daylight L2-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

HA, Bare Metal deployment in OpenStack with Open Daylight L2-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Non-HA deployment in OpenStack with Open Daylight L2-only environment
There is no settings file provided by default for odl_l2 non-HA deployment
You need to copy /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml to another file
e.g. /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml
and change the "ha_enabled" parameter to be "false", i.e.: "ha_enabled: false", and:

- For Non-HA, Virtual deployment
./opnfv-deploy -v -d /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml \
-n /etc/opnfv-apex/network_setting.yaml

- For Non-HA, Bare Metal deployment
./opnfv-deploy -d /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting.yaml

Note:
#
1. Parameter ""-v" is mandatory for Virtual deployment
2. Parameter "-i <inventory file>" is mandatory for Bare Metal deployment
2.1 Refer to https://git.opnfv.org/cgit/apex/tree/config/inventory for examples of inventory file
3. You can use "-n /etc/opnfv-apex/network_setting_v6.yaml" for deployment in IPv6-only infrastructure

Compass Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
export ISO_URL=file://$BUILD_DIRECTORY/compass.iso
export OS_VERSION=${{COMPASS_OS_VERSION}}
export OPENSTACK_VERSION=${{COMPASS_OPENSTACK_VERSION}}
export CONFDIR=$WORKSPACE/deploy/conf/vm_environment
./deploy.sh --dha $CONFDIR/os-odl_l2-nofeature-ha.yml \
--network $CONFDIR/$NODE_NAME/network.yml

Non-HA deployment in OpenStack with Open Daylight L2-only environment
Non-HA deployment is currently not supported by Compass installer

Fuel Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
Scenario Name: os-odl_l2-nofeature-ha
Scenario Configuration File: ha_odl-l2_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-odl_l2-nofeature-ha -i <iso-uri>

Non-HA deployment in OpenStack with Open Daylight L2-only environment
Scenario Name: os-odl_l2-nofeature-noha
Scenario Configuration File: no-ha_odl-l2_heat_ceilometer_scenario.yaml
You can use either Scenario Name or Scenario Configuration File Name in "-s" parameter
sudo ./deploy.sh -b <stack-config-uri> -l <lab-name> -p <pod-name> \
-s os-odl_l2-nofeature-noha -i <iso-uri>

Note:
#
1. Refer to http://git.opnfv.org/cgit/fuel/tree/deploy/scenario/scenario.yaml for scenarios
2. Refer to http://git.opnfv.org/cgit/fuel/tree/ci/README for description of
stack configuration directory structure
3. <stack-config-uri> is the base URI of stack configuration directory structure
3.1 Example: http://git.opnfv.org/cgit/fuel/tree/deploy/config
4. <lab-name> and <pod-name> must match the directory structure in stack configuration
4.1 Example of <lab-name>: -l devel-pipeline
4.2 Example of <pod-name>: -p elx
5. <iso-uri> could be local or remote ISO image of Fuel Installer
5.1 Example: http://artifacts.opnfv.org/fuel/colorado/opnfv-colorado.1.0.iso
#
Please refer to Fuel Installer's documentation for further information and any update

Joid Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -o mitaka -s odl -t ha -l default -f ipv6

Non-HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -o mitaka -s odl -t nonha -l default -f ipv6

Please NOTE that:

	You need to refer to installer’s documentation for other necessary
parameters applicable to your deployment.

	You need to refer to Release Notes and installer’s documentation if there is
any issue in installation.

OPNFV-INSTALL-2: Clone the following GitHub repository to get the
configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git \
/opt/stack/opnfv_os_ipv6_poc

2.3.2. Disable Security Groups in OpenStack ML2 Setup

Please NOTE that although Security Groups feature has been disabled automatically
through local.conf configuration file by some installers such as devstack, it is very likely
that other installers such as Apex, Compass, Fuel or Joid will enable Security
Groups feature after installation.

Please make sure that Security Groups are disabled in the setup

In order to disable Security Groups globally, please make sure that the settings in
OPNFV-SEC-1 and OPNFV-SEC-2 are applied, if they are not there by default.

OPNFV-SEC-1: Change the settings in
/etc/neutron/plugins/ml2/ml2_conf.ini as follows, if they
are not there by default.

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
enable_security_group = True
firewall_driver = neutron.agent.firewall.NoopFirewallDriver
[ml2]
extension_drivers = port_security
[agent]
prevent_arp_spoofing = False

OPNFV-SEC-2: Change the settings in /etc/nova/nova.conf as follows,
if they are not there by default.

/etc/nova/nova.conf
[DEFAULT]
security_group_api = neutron
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OPNFV-SEC-3: After updating the settings, you will have to restart the
Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary
depending on the installer. Please refer to relevant documentation of specific installers

2.3.3. Source the Credentials in OpenStack Controller Node

SETUP-SVM-1: Login in OpenStack Controller Node. Start a new terminal,
and change directory to where OpenStack is installed.

SETUP-SVM-2: We have to source the tenant credentials in this step. Please NOTE
that the method of sourcing tenant credentials may vary depending on installers. For example:

Apex installer:

On jump host, source the tenant credentials using /bin/opnfv-util provided by Apex installer
opnfv-util undercloud "source overcloudrc; keystone service-list"

Alternatively, you can copy the file /home/stack/overcloudrc from the installer VM called "undercloud"
to a location in controller node, for example, in the directory /opt, and do:
source /opt/overcloudrc

Compass installer:

source the tenant credentials using Compass installer of OPNFV
source /opt/admin-openrc.sh

Fuel installer:

source the tenant credentials using Fuel installer of OPNFV
source /root/openrc

Joid installer:

source the tenant credentials using Joid installer of OPNFV
source $HOME/joid_config/admin-openrc

devstack:

source the tenant credentials in devstack
source openrc admin demo

Please refer to relevant documentation of installers if you encounter any issue.

2.3.4. Informational Note: Move Public Network from Physical Network Interface to br-ex

SETUP-SVM-3: Move the physical interface (i.e. the public network interface) to br-ex

SETUP-SVM-4: Verify setup of br-ex

Those 2 steps are Informational. OPNFV Installer has taken care of those 2 steps during deployment.
You may refer to this step only if there is any issue, or if you are using other installers.

We have to move the physical interface (i.e. the public network interface) to br-ex, including moving
the public IP address and setting up default route. Please refer to SETUP-SVM-3 and
SETUP-SVM-4 in our more complete instruction [http://artifacts.opnfv.org/ipv6/docs/setupservicevm/4-ipv6-configguide-servicevm.html#add-external-connectivity-to-br-ex].

2.3.5. Create IPv4 Subnet and Router with External Connectivity

SETUP-SVM-5: Create a Neutron router ipv4-router which needs to provide external connectivity.

neutron router-create ipv4-router

SETUP-SVM-6: Create an external network/subnet ext-net using the appropriate values based on the
data-center physical network setup.

Please NOTE that you may only need to create the subnet of ext-net because OPNFV installers
should have created an external network during installation. You must use the same name of external
network that installer creates when you create the subnet. For example:

	Apex installer: external

	Compass installer: ext-net

	Fuel installer: admin_floating_net

	Joid installer: ext-net

Please refer to the documentation of installers if there is any issue

This is needed only if installer does not create an external work
Otherwise, skip this command "net-create"
neutron net-create --router:external ext-net

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,\
end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

Please note that the IP addresses in the command above are for exemplary purpose. Please replace the IP addresses of
your actual network.

SETUP-SVM-7: Associate the ext-net to the Neutron router ipv4-router.

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv4-router ext-net

SETUP-SVM-8: Create an internal/tenant IPv4 network ipv4-int-network1

neutron net-create ipv4-int-network1

SETUP-SVM-9: Create an IPv4 subnet ipv4-int-subnet1 in the internal network ipv4-int-network1

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 \
ipv4-int-network1 20.0.0.0/24

SETUP-SVM-10: Associate the IPv4 internal subnet ipv4-int-subnet1 to the Neutron router ipv4-router.

neutron router-interface-add ipv4-router ipv4-int-subnet1

2.3.6. Create IPv6 Subnet and Router with External Connectivity

Now, let us create a second neutron router where we can “manually” spawn a radvd daemon to simulate an external
IPv6 router.

SETUP-SVM-11: Create a second Neutron router ipv6-router which needs to provide external connectivity

neutron router-create ipv6-router

SETUP-SVM-12: Associate the ext-net to the Neutron router ipv6-router

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv6-router ext-net

SETUP-SVM-13: Create a second internal/tenant IPv4 network ipv4-int-network2

neutron net-create ipv4-int-network2

SETUP-SVM-14: Create an IPv4 subnet ipv4-int-subnet2 for the ipv6-router internal network
ipv4-int-network2

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 \
ipv4-int-network2 10.0.0.0/24

SETUP-SVM-15: Associate the IPv4 internal subnet ipv4-int-subnet2 to the Neutron router ipv6-router.

neutron router-interface-add ipv6-router ipv4-int-subnet2

2.3.7. Prepare Image, Metadata and Keypair for Service VM

SETUP-SVM-16: Download fedora22 image which would be used as vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/\
Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare \
--file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

SETUP-SVM-17: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

SETUP-SVM-18: Create ports for vRouter and both the VMs with some specific MAC addresses.

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv4-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1
neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

2.3.8. Boot Service VM (vRouter) with eth0 on ipv4-int-network2 and eth1 on ipv4-int-network1

Let us boot the service VM (vRouter) with eth0 interface on ipv4-int-network2 connecting to ipv6-router,
and eth1 interface on ipv4-int-network1 connecting to ipv4-router.

SETUP-SVM-19: Boot the vRouter using Fedora22 image on the OpenStack Compute Node with hostname
opnfv-os-compute

nova boot --image Fedora22 --flavor m1.small \
--user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') \
--nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') \
--key-name vRouterKey vRouter

Please note that /opt/stack/opnfv_os_ipv6_poc/metadata.txt is used to enable the vRouter to automatically
spawn a radvd, and

	Act as an IPv6 vRouter which advertises the RA (Router Advertisements) with prefix
2001:db8:0:2::/64 on its internal interface (eth1).

	Forward IPv6 traffic from internal interface (eth1)

SETUP-SVM-20: Verify that Fedora22 image boots up successfully and vRouter has ssh keys properly injected

nova list
nova console-log vRouter

Please note that it may take a few minutes for the necessary packages to get installed and ssh keys
to be injected.

Sample Output
[762.884523] cloud-init[871]: ec2: ###
[762.909634] cloud-init[871]: ec2: -----BEGIN SSH HOST KEY FINGERPRINTS-----
[762.931626] cloud-init[871]: ec2: 2048 e3:dc:3d:4a:bc:b6:b0:77:75:a1:70:a3:d0:2a:47:a9 (RSA)
[762.957380] cloud-init[871]: ec2: -----END SSH HOST KEY FINGERPRINTS-----
[762.979554] cloud-init[871]: ec2: ###

2.3.9. Boot Two Other VMs in ipv4-int-network1

In order to verify that the setup is working, let us create two cirros VMs with eth1 interface on the
ipv4-int-network1, i.e., connecting to vRouter eth1 interface for internal network.

We will have to configure appropriate mtu on the VMs’ interface by taking into account the tunneling
overhead and any physical switch requirements. If so, push the mtu to the VM either using dhcp
options or via meta-data.

SETUP-SVM-21: Create VM1 on OpenStack Controller Node with hostname opnfv-os-controller

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-controller \
--nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') \
--key-name vRouterKey VM1

SETUP-SVM-22: Create VM2 on OpenStack Compute Node with hostname opnfv-os-compute

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') \
--key-name vRouterKey VM2

SETUP-SVM-23: Confirm that both the VMs are successfully booted.

nova list
nova console-log VM1
nova console-log VM2

2.3.10. Spawn RADVD in ipv6-router

Let us manually spawn a radvd daemon inside ipv6-router namespace to simulate an external router.
First of all, we will have to identify the ipv6-router namespace and move to the namespace.

Please NOTE that in case of HA (High Availability) deployment model where multiple controller
nodes are used, ipv6-router created in step SETUP-SVM-11 could be in any of the controller
node. Thus you need to identify in which controller node ipv6-router is created in order to manually
spawn radvd daemon inside the ipv6-router namespace in steps SETUP-SVM-24 through
SETUP-SVM-30. The following command in Neutron will display the controller on which the
ipv6-router is spawned.

neutron l3-agent-list-hosting-router ipv6-router

Then you login to that controller and execute steps SETUP-SVM-24
through SETUP-SVM-30

SETUP-SVM-24: identify the ipv6-router namespace and move to the namespace

sudo ip netns exec qrouter-$(neutron router-list | grep -w ipv6-router | \
awk '{print $2}') bash

SETUP-SVM-25: Upon successful execution of the above command, you will be in the router namespace.
Now let us configure the IPv6 address on the <qr-xxx> interface.

export router_interface=$(ip a s | grep -w "global qr-*" | awk '{print $7}')
ip -6 addr add 2001:db8:0:1::1 dev $router_interface

SETUP-SVM-26: Update the sample file /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf
with $router_interface.

cp /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf /tmp/radvd.$router_interface.conf
sed -i 's/$router_interface/'$router_interface'/g' /tmp/radvd.$router_interface.conf

SETUP-SVM-27: Spawn a radvd daemon to simulate an external router. This radvd daemon advertises an IPv6
subnet prefix of 2001:db8:0:1::/64 using RA (Router Advertisement) on its $router_interface so that eth0
interface of vRouter automatically configures an IPv6 SLAAC address.

$radvd -C /tmp/radvd.$router_interface.conf -p /tmp/br-ex.pid.radvd -m syslog

SETUP-SVM-28: Add an IPv6 downstream route pointing to the eth0 interface of vRouter.

ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111

SETUP-SVM-29: The routing table should now look similar to something shown below.

ip -6 route show
2001:db8:0:1::1 dev qr-42968b9e-62 proto kernel metric 256
2001:db8:0:1::/64 dev qr-42968b9e-62 proto kernel metric 256 expires 86384sec
2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111 dev qr-42968b9e-62 proto ra metric 1024 expires 29sec
fe80::/64 dev qg-3736e0c7-7c proto kernel metric 256
fe80::/64 dev qr-42968b9e-62 proto kernel metric 256

SETUP-SVM-30: If all goes well, the IPv6 addresses assigned to the VMs would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address:
2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address:
2001:db8:0:2::1/64
VM1 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe44:4444/64

2.3.11. Testing to Verify Setup Complete

Now, let us SSH to those VMs, e.g. VM1 and / or VM2 and / or vRouter, to confirm that
it has successfully configured the IPv6 address using SLAAC with prefix
2001:db8:0:2::/64 from vRouter.

We use floatingip mechanism to achieve SSH.

SETUP-SVM-31: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

If everything goes well, ssh will be successful and you will be logged into those VMs.
Run some commands to verify that IPv6 addresses are configured on eth0 interface.

SETUP-SVM-32: Show an IPv6 address with a prefix of 2001:db8:0:2::/64

ip address show

SETUP-SVM-33: ping some external IPv6 address, e.g. ipv6-router

ping6 2001:db8:0:1::1

If the above ping6 command succeeds, it implies that vRouter was able to successfully forward the IPv6 traffic
to reach external ipv6-router.

2.4. IPv6 Post Installation Procedures

Congratulations, you have completed the setup of using a service VM to act as an IPv6 vRouter.
You have validated the setup based on the instruction in previous sections. If you want to further
test your setup, you can ping6 among VM1, VM2, vRouter and ipv6-router.

This setup allows further open innovation by any 3rd-party. For more instructions and documentations,
please refer to:

	IPv6 Configuration Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html

	IPv6 User Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

2.5. Automated post installation activities

Refer to the relevant testing guides, results, and release notes of Yardstick Project.

IPv6 Installation Procedure and Configuration Guide

	Abstract

	

This document provides the users with:

	Installation Procedure to install OPNFV Colorado Release on IPv6-only Infrastructure

	Configuration Guide to set up a service VM as an IPv6 vRouter using OPNFV Colorado Release

	1. Install OPNFV on IPv6-Only Infrastructure
	1.1. Install OPNFV in OpenStack-Only Environment

	1.2. Install OPNFV in OpenStack with ODL-L2 Environment

	1.3. Testing Methodology
	1.3.1. Underlay Testing

	1.3.2. Overlay Testing

	2. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter
	2.1. Pre-configuration Activities

	2.2. Setup Manual in OpenStack-Only Environment
	2.2.1. Install OPNFV and Preparation

	2.2.2. Disable Security Groups in OpenStack ML2 Setup

	2.2.3. Set Up Service VM as IPv6 vRouter

	2.3. Setup Manual in OpenStack with Open Daylight L2-Only Environment
	2.3.1. Install OPNFV and Preparation

	2.3.2. Disable Security Groups in OpenStack ML2 Setup

	2.3.3. Source the Credentials in OpenStack Controller Node

	2.3.4. Informational Note: Move Public Network from Physical Network Interface to br-ex

	2.3.5. Create IPv4 Subnet and Router with External Connectivity

	2.3.6. Create IPv6 Subnet and Router with External Connectivity

	2.3.7. Prepare Image, Metadata and Keypair for Service VM

	2.3.8. Boot Service VM (vRouter) with eth0 on ipv4-int-network2 and eth1 on ipv4-int-network1

	2.3.9. Boot Two Other VMs in ipv4-int-network1

	2.3.10. Spawn RADVD in ipv6-router

	2.3.11. Testing to Verify Setup Complete

	2.4. IPv6 Post Installation Procedures

	2.5. Automated post installation activities

1. Install OPNFV on IPv6-Only Infrastructure

This section provides instructions to install OPNFV on IPv6-only Infrastructure. All underlay networks
and API endpoints will be IPv6-only except:

	“admin” network in underlay/undercloud still has to be IPv4, due to lack of support of IPMI
over IPv6 or PXE over IPv6.

	OVS VxLAN (or GRE) tunnel endpoint is still IPv4 only, although IPv6 traffic can be
encapsulated within the tunnel.

	Metadata server is still IPv4 only.

Except the limitations above, the use case scenario of the IPv6-only infrastructure includes:

	Support OPNFV deployment on an IPv6 only infrastructure.

	Horizon/ODL-DLUX access using IPv6 address from an external host.

	OpenStack API access using IPv6 addresses from various python-clients.

	Ability to create Neutron Routers, IPv6 subnets (e.g. SLAAC/DHCPv6-Stateful/
DHCPv6-Stateless) to support North-South traffic.

	Inter VM communication (East-West routing) when VMs are spread
across two compute nodes.

	VNC access into a VM using IPv6 addresses.

1.1. Install OPNFV in OpenStack-Only Environment

Apex Installer:

HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-n /etc/opnfv-apex/network_setting_v6.yaml

HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting_v6.yaml

Non-HA, Virtual deployment in OpenStack-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-n /etc/opnfv-apex/network_setting_v6.yaml

Non-HA, Bare Metal deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-noha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting_v6.yaml

Note:
#
1. Parameter ""-v" is mandatory for Virtual deployment
2. Parameter "-i <inventory file>" is mandatory for Bare Metal deployment
2.1 Refer to https://git.opnfv.org/cgit/apex/tree/config/inventory for examples of inventory file
3. You can use "-n /etc/opnfv-apex/network_setting.yaml" for deployment in IPv4 infrastructure

Please NOTE that:

	You need to refer to installer’s documentation for other necessary
parameters applicable to your deployment.

	You need to refer to Release Notes and installer’s documentation if there is
any issue in installation.

1.2. Install OPNFV in OpenStack with ODL-L2 Environment

Apex Installer:

HA, Virtual deployment in OpenStack with Open Daylight L2-only environment
./opnfv-deploy -v -d /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml \
-n /etc/opnfv-apex/network_setting_v6.yaml

HA, Bare Metal deployment in OpenStack with Open Daylight L2-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting_v6.yaml

Non-HA deployment in OpenStack with Open Daylight L2-only environment
There is no settings file provided by default for odl_l2 non-HA deployment
You need to copy /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml to another file
e.g. /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml
and change the "ha_enabled" parameter to be "false", i.e.: "ha_enabled: false", and:

- For Non-HA, Virtual deployment
./opnfv-deploy -v -d /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml \
-n /etc/opnfv-apex/network_setting_v6.yaml

- For Non-HA, Bare Metal deployment
./opnfv-deploy -d /etc/opnfv-apex/os-odl_l2-nofeature-noha.yaml \
-i <inventory file> -n /etc/opnfv-apex/network_setting_v6.yaml

Note:
#
1. Parameter ""-v" is mandatory for Virtual deployment
2. Parameter "-i <inventory file>" is mandatory for Bare Metal deployment
2.1 Refer to https://git.opnfv.org/cgit/apex/tree/config/inventory for examples of inventory file
3. You can use "-n /etc/opnfv-apex/network_setting.yaml" for deployment in IPv4 infrastructure

Please NOTE that:

	You need to refer to installer’s documentation for other necessary
parameters applicable to your deployment.

	You need to refer to Release Notes and installer’s documentation if there is
any issue in installation.

1.3. Testing Methodology

There are 2 levels of testing to validate the deployment.

1.3.1. Underlay Testing

Underlay Testing is to validate that API endpoints are listening on IPv6 addresses.
This can be as simple as validating Keystone service, and as complete as validating each
API endpoint. It is important to reuse Tempest API testing.

Please Note that, to the best of our knowledge, Tempest API testing does not validate
API endpoints listening on IPv6 addresses. Thus Underlay Testing is postponed to future
release until Tempest API testing is ready to validate API endpoints listening on IPv6 addresses.

1.3.2. Overlay Testing

Overlay Testing is to validate that IPv6 is supported in tenant networks, subnets and routers.
Both Tempest API testing and Tempest Scenario testing are used in our Overlay Testing.

Tempest API testing validates that the Neutron API supports the creation of IPv6 networks, subnets, routers, etc:

tempest.api.network.test_networks.BulkNetworkOpsIpV6Test.test_bulk_create_delete_network
tempest.api.network.test_networks.BulkNetworkOpsIpV6Test.test_bulk_create_delete_port
tempest.api.network.test_networks.BulkNetworkOpsIpV6Test.test_bulk_create_delete_subnet
tempest.api.network.test_networks.NetworksIpV6Test.test_create_update_delete_network_subnet
tempest.api.network.test_networks.NetworksIpV6Test.test_external_network_visibility
tempest.api.network.test_networks.NetworksIpV6Test.test_list_networks
tempest.api.network.test_networks.NetworksIpV6Test.test_list_subnets
tempest.api.network.test_networks.NetworksIpV6Test.test_show_network
tempest.api.network.test_networks.NetworksIpV6Test.test_show_subnet
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_create_update_delete_network_subnet
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_external_network_visibility
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_list_networks
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_list_subnets
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_show_network
tempest.api.network.test_networks.NetworksIpV6TestAttrs.test_show_subnet
tempest.api.network.test_ports.PortsIpV6TestJSON.test_create_port_in_allowed_allocation_pools
tempest.api.network.test_ports.PortsIpV6TestJSON.test_create_port_with_no_securitygroups
tempest.api.network.test_ports.PortsIpV6TestJSON.test_create_update_delete_port
tempest.api.network.test_ports.PortsIpV6TestJSON.test_list_ports
tempest.api.network.test_ports.PortsIpV6TestJSON.test_show_port
tempest.api.network.test_routers.RoutersIpV6Test.test_add_multiple_router_interfaces
tempest.api.network.test_routers.RoutersIpV6Test.test_add_remove_router_interface_with_port_id
tempest.api.network.test_routers.RoutersIpV6Test.test_add_remove_router_interface_with_subnet_id
tempest.api.network.test_routers.RoutersIpV6Test.test_create_show_list_update_delete_router
tempest.api.network.test_security_groups.SecGroupIPv6Test.test_create_list_update_show_delete_security_group
tempest.api.network.test_security_groups.SecGroupIPv6Test.test_create_show_delete_security_group_rule
tempest.api.network.test_security_groups.SecGroupIPv6Test.test_list_security_groups

Tempest Scenario testing validates some specific overlay IPv6 scenarios
(i.e. use cases) as follows:

tempest.scenario.test_network_v6.TestGettingAddress.test_dhcp6_stateless_from_os
tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_dhcp6_stateless_from_os
tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_multi_prefix_dhcpv6_stateless
tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_multi_prefix_slaac
tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_slaac_from_os
tempest.scenario.test_network_v6.TestGettingAddress.test_multi_prefix_dhcpv6_stateless
tempest.scenario.test_network_v6.TestGettingAddress.test_multi_prefix_slaac
tempest.scenario.test_network_v6.TestGettingAddress.test_slaac_from_os

The above Tempest API testing and Scenario testing are quite comprehensive to validate
overlay IPv6 tenant networks. They are part of OpenStack default Smoke Tests,
run in FuncTest and integrated into OPNFV’s CI/CD environment.

Using IPv6 Feature of Hunter Release

This section provides the users with gap analysis regarding IPv6 feature requirements with
OpenStack Rocky Official Release and Open Daylight Fluorine Official Release. The gap analysis
serves as feature specific user guides and references when as a user you may leverage the
IPv6 feature in the platform and need to perform some IPv6 related operations.

For more information, please find Neutron’s IPv6 document for Rocky Release 1.

IPv6 Gap Analysis with OpenStack Rocky

This section provides users with IPv6 gap analysis regarding feature requirement with
OpenStack Neutron in Rocky Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with OpenStack Neutron in Rocky Official Release.

Please NOTE that in terms of IPv6 support in OpenStack Neutron, there is no difference
between Rocky release and prior, e.g. Queens, Pike and Ocata, release.

	Use Case / Requirement

	Supported in Rocky

	Notes

	All topologies work in a multi-tenant environment

	Yes

	The IPv6 design is following the Neutron tenant networks model;
dnsmasq is being used inside DHCP network namespaces, while radvd
is being used inside Neutron routers namespaces to provide full
isolation between tenants. Tenant isolation can be based on VLANs,
GRE, or VXLAN encapsulation. In case of overlays, the transport
network (and VTEPs) must be IPv4 based as of today.

	IPv6 VM to VM only

	Yes

	It is possible to assign IPv6-only addresses to VMs. Both switching
(within VMs on the same tenant network) as well as east/west routing
(between different networks of the same tenant) are supported.

	IPv6 external L2 VLAN directly attached to a VM

	Yes

	IPv6 provider network model; RA messages from upstream (external)
router are forwarded into the VMs

	IPv6 subnet routed via L3 agent to an external IPv6 network

	Both VLAN and overlay (e.g. GRE, VXLAN) subnet attached
to VMs;

	Must be able to support multiple L3 agents for a given
external network to support scaling (neutron scheduler
to assign vRouters to the L3 agents)

	
	Yes

	Yes

	Configuration is enhanced since Kilo to allow easier setup of the
upstream gateway, without the user being forced to create an IPv6
subnet for the external network.

	Ability for a NIC to support both IPv4 and IPv6 (dual
stack) address.

	VM with a single interface associated with a network,
which is then associated with two subnets.

	VM with two different interfaces associated with two
different networks and two different subnets.

	
	Yes

	Yes

	Dual-stack is supported in Neutron with the addition of
Multiple IPv6 Prefixes Blueprint

	Support IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	
	Yes

	Yes

	Yes

	

	Ability to create a port on an IPv6 DHCPv6 Stateful subnet
and assign a specific IPv6 address to the port and have it
taken out of the DHCP address pool.

	Yes

	

	Ability to create a port with fixed_ip for a
SLAAC/DHCPv6-Stateless Subnet.

	No

	The following patch disables this operation:
https://review.openstack.org/#/c/129144/

	Support for private IPv6 to external IPv6 floating IP;
Ability to specify floating IPs via Neutron API (REST and
CLI) as well as via Horizon, including combination of
IPv6/IPv4 and IPv4/IPv6 floating IPs if implemented.

	Rejected

	Blueprint proposed in upstream and got rejected. General expectation
is to avoid NAT with IPv6 by assigning GUA to tenant VMs. See
https://review.openstack.org/#/c/139731/ for discussion.

	Provide IPv6/IPv4 feature parity in support for
pass-through capabilities (e.g., SR-IOV).

	To-Do

	The L3 configuration should be transparent for the SR-IOV
implementation. SR-IOV networking support introduced in Juno based
on the sriovnicswitch ML2 driver is expected to work with IPv4
and IPv6 enabled VMs. We need to verify if it works or not.

	Additional IPv6 extensions, for example: IPSEC, IPv6
Anycast, Multicast

	No

	It does not appear to be considered yet (lack of clear requirements)

	VM access to the meta-data server to obtain user data, SSH
keys, etc. using cloud-init with IPv6 only interfaces.

	No

	This is currently not supported. Config-drive or dual-stack IPv4 /
IPv6 can be used as a workaround (so that the IPv4 network is used
to obtain connectivity with the metadata service). The following
blog 2 provides a neat summary on how to use config-drive for
metadata with IPv6 network.

	Full support for IPv6 matching (i.e., IPv6, ICMPv6, TCP,
UDP) in security groups. Ability to control and manage all
IPv6 security group capabilities via Neutron/Nova API (REST
and CLI) as well as via Horizon.

	Yes

	Both IPTables firewall driver and OVS firewall driver support IPv6
Security Group API.

	During network/subnet/router create, there should be an
option to allow user to specify the type of address
management they would like. This includes all options
including those low priority if implemented (e.g., toggle
on/off router and address prefix advertisements); It must
be supported via Neutron API (REST and CLI) as well as via
Horizon

	Yes

	Two new Subnet attributes were introduced to control IPv6 address
assignment options:

	ipv6-ra-mode: to determine who sends Router Advertisements;

	ipv6-address-mode: to determine how VM obtains IPv6 address,
default gateway, and/or optional information.

	Security groups anti-spoofing: Prevent VM from using a
source IPv6/MAC address which is not assigned to the VM

	Yes

	

	Protect tenant and provider network from rogue RAs

	Yes

	When using a tenant network, Neutron is going to automatically
handle the filter rules to allow connectivity of RAs to the VMs only
from the Neutron router port; with provider networks, users are
required to specify the LLA of the upstream router during the subnet
creation, or otherwise manually edit the security-groups rules to
allow incoming traffic from this specific address.

	Support the ability to assign multiple IPv6 addresses to
an interface; both for Neutron router interfaces and VM
interfaces.

	Yes

	

	Ability for a VM to support a mix of multiple IPv4 and IPv6
networks, including multiples of the same type.

	Yes

	

	IPv6 Support in “Allowed Address Pairs” Extension

	Yes

	

	Support for IPv6 Prefix Delegation.

	Yes

	Partial support in Rocky

	Distributed Virtual Routing (DVR) support for IPv6

	No

	In Rocky DVR implementation, IPv6 works. But all the IPv6 ingress/
egress traffic is routed via the centralized controller node, i.e.
similar to SNAT traffic.
A fully distributed IPv6 router is not yet supported in Neutron.

	VPNaaS

	Yes

	VPNaaS supports IPv6. But this feature is not extensively tested.

	FWaaS

	Yes

	

	BGP Dynamic Routing Support for IPv6 Prefixes

	Yes

	BGP Dynamic Routing supports peering via IPv6 and advertising IPv6
prefixes.

	VxLAN Tunnels with IPv6 endpoints.

	Yes

	Neutron ML2/OVS supports configuring local_ip with IPv6 address so
that VxLAN tunnels are established with IPv6 addresses. This
feature requires OVS 2.6 or higher version.

	IPv6 First-Hop Security, IPv6 ND spoofing

	Yes

	

	IPv6 support in Neutron Layer3 High Availability
(keepalived+VRRP).

	Yes

	

IPv6 Gap Analysis with Open Daylight Fluorine

This section provides users with IPv6 gap analysis regarding feature requirement with
Open Daylight Fluorine Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with Open Daylight Fluorine Official Release.

Open Daylight Fluorine Status

In Open Daylight Fluorine official release, the legacy Old Netvirt identified by feature
odl-ovsdb-openstack is deprecated and no longer supported. The New Netvirt
identified by feature odl-netvirt-openstack is used.

Two new features are supported in Open Daylight Fluorine official release:

	Support for advertising MTU info in IPv6 RAs

	IPv6 external connectivity for FLAT/VLAN based provider networks

	Use Case / Requirement

	Supported in ODL Fluorine

	Notes

	REST API support for IPv6 subnet creation in ODL

	Yes

	Yes, it is possible to create IPv6 subnets in ODL using
Neutron REST API.

For a network which has both IPv4 and IPv6 subnets, ODL
mechanism driver will send the port information which
includes IPv4/v6 addresses to ODL Neutron northbound API.
When port information is queried, it displays IPv4 and IPv6
addresses.

	IPv6 Router support in ODL:

	Communication between VMs on same network

	Yes

	

	IPv6 Router support in ODL:

	Communication between VMs on different
networks connected to the same router
(east-west)

	Yes

	

	IPv6 Router support in ODL:

	External routing (north-south)

	NO

	This feature is targeted for Flourine Release.
In ODL Fluorine Release, RFE “IPv6 Inter-DC L3 North-South
Connectivity Using L3VPN Provider Network Types” Spec 3 is
merged. But the code patch has not been merged yet.
On the other hand, “IPv6 Cluster Support” is available in
Fluorine Release 4. Basically, existing IPv6 features were
enhanced to work in a three node ODL Clustered Setup.

	IPAM: Support for IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	Yes

	ODL IPv6 Router supports all the IPv6 Address assignment
modes along with Neutron DHCP Agent.

	When using ODL for L2 forwarding/tunneling, it is
compatible with IPv6.

	Yes

	

	Full support for IPv6 matching (i.e. IPv6, ICMPv6,
TCP, UDP) in security groups. Ability to control
and manage all IPv6 security group capabilities
via Neutron/Nova API (REST and CLI) as well as
via Horizon

	Yes

	

	Shared Networks support

	Yes

	

	IPv6 external L2 VLAN directly attached to a VM.

	Yes

	Targeted for Flourine Release

	ODL on an IPv6 only Infrastructure.

	Yes

	Deploying OpenStack with ODL on an IPv6 only infrastructure
where the API endpoints are all IPv6 addresses.

	VxLAN Tunnels with IPv6 Endpoints

	Yes

	

	IPv6 L3VPN Dual Stack with Single router

	Yes

	Refer to “Dual Stack VM support in OpenDaylight” Spec 5.

	IPv6 Inter Data Center using L3VPNs

	Yes

	Refer to “IPv6 Inter-DC L3 North-South connectivity using
L3VPN provider network types” Spec 3.

	Support for advertising MTU info in IPv6 RAs

	Yes

	

	IPv6 external connectivity for FLAT/VLAN based
provider networks

	Yes

	

References

	1

	Neutron IPv6 Documentation for Rocky Release: http://docs.openstack.org/neutron/rocky/admin/config-ipv6.html

	2

	How to Use Config-Drive for Metadata with IPv6 Network: http://superuser.openstack.org/articles/deploying-ipv6-only-tenants-with-openstack/

	3(1,2)

	https://docs.opendaylight.org/projects/netvirt/en/stable-fluorine/specs/oxygen/ipv6-interdc-l3vpn.html

	4

	http://git.opendaylight.org/gerrit/#/c/66707/

	5

	https://docs.opendaylight.org/projects/netvirt/en/stable-fluorine/specs/oxygen/l3vpn-dual-stack-vms.html

3.1. Infrastructure Setup

In order to set up the service VM as an IPv6 vRouter, we need to prepare 3 hosts,
each of which has minimum 8GB RAM and 40GB storage. One host is used as OpenStack Controller
Node. The second host is used as Open Daylight Controller Node. And the third one is used as
OpenStack Compute Node.

Please NOTE that in case of HA (High Availability) deployment model where multiple controller
nodes are used, the setup procedure is the same. When ipv6-router is created in step SETUP-SVM-11,
it could be created in any of the controller node. Thus you need to identify in which controller node
ipv6-router is created in order to manually spawn radvd daemon inside the ipv6-router namespace
in steps SETUP-SVM-24 through SETUP-SVM-30.

For exemplary purpose, we assume:

	The hostname of OpenStack Controller+Network+Compute Node is opnfv-os-controller, and the host IP address
is 192.168.0.10

	The hostname of OpenStack Compute Node is opnfv-os-compute, and the host IP address is 192.168.0.20

	The hostname of Open Daylight Controller Node is opnfv-odl-controller, and the host IP address is
192.168.0.30

	We use opnfv as username to login.

	We use devstack to install OpenStack Kilo. Please note that OpenStack Liberty can be used as well.

The underlay network topology of those 3 hosts are shown as follows in s2-figure1:

[image: ../_images/ipv6-topology-scenario-2.png]
Underlay Network Topology - Scenario 2

Please note that the IP address shown in s2-figure1
are for exemplary purpose. You need to configure your public IP
address connecting to Internet according to your actual network
infrastructure. And you need to make sure the private IP address are
not conflicting with other subnets.

3.2. Setting Up Open Daylight Controller Node

For exemplary purpose, we assume:

	The hostname of Open Daylight Controller Node is opnfv-odl-controller, and the host IP address is
192.168.0.30

	CentOS 7 is installed

	We use opnfv as username to login.

	Java 7 is installed in directory /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.85-2.6.1.2.el7_1.x86_64/

ODL-1: Login to Open Daylight Controller Node with username opnfv.

ODL-2: Download the ODL Lithium distribution from
http://www.opendaylight.org/software/downloads

wget https://nexus.opendaylight.org/content/groups/public/org/opendaylight/integration/distribution-karaf/0.3.3-Lithium-SR3/distribution-karaf-0.3.3-Lithium-SR3.tar.gz

ODL-3: Extract the tar file

tar -zxvf distribution-karaf-0.3.3-Lithium-SR3.tar.gz

ODL-4: Install Java7

sudo yum install -y java-1.7.0-openjdk.x86_64

ODL-5 (OPTIONAL): We are using iptables instead of
firewalld but this is optional for the OpenDaylight Controller
Node. The objective is to allow all connections on the internal
private network (ens160). The same objective can be achieved using
firewalld as well. If you intend to use firewalld, please skip this step and directly go to next step:

sudo systemctl stop firewalld.service
sudo yum remove -y firewalld
sudo yum install -y iptables-services
sudo touch /etc/sysconfig/iptables
sudo systemctl enable iptables.service
sudo systemctl start iptables.service
sudo iptables -I INPUT 1 -i ens160 -j ACCEPT
sudo iptables -I INPUT -m state --state NEW -p tcp --dport 8181 -j ACCEPT # For ODL DLUX UI
sudo iptables-save > /etc/sysconfig/iptables

ODL-6: Open a screen session.

screen -S ODL_Controller

ODL-7: In the new screen session, change directory to where Open
Daylight is installed. Here we use odl directory name and
Lithium SR3 installation as an example.

cd ~/odl/distribution-karaf-0.3.3-Lithium-SR3/bin

ODL-8: Set the JAVA environment variables.

export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.85-2.6.1.2.el7_1.x86_64/jre
export PATH=$PATH:/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.85-2.6.1.2.el7_1.x86_64/jre/bin

ODL-9: Run the karaf shell.

./karaf

ODL-10: You are now in the Karaf shell of Open Daylight. To explore the list of available features you can execute
feature:list. In order to enable Open Daylight with OpenStack, you have to load the odl-ovsdb-openstack
feature.

opendaylight-user@opnfv>feature:install odl-ovsdb-openstack

ODL-11: Verify that OVSDB feature is installed successfully.

opendaylight-user@opnfv>feature:list -i | grep ovsdb
odl-ovsdb-openstack | 1.1.1-Lithium-SR1 | x | ovsdb-1.1.1-Lithium-SR1 | OpenDaylight :: OVSDB :: OpenStack Network Virtual
odl-ovsdb-southbound-api | 1.1.1-Lithium-SR1 | x | odl-ovsdb-southbound-1.1.1-Lithium-SR1 | OpenDaylight :: southbound :: api
odl-ovsdb-southbound-impl | 1.1.1-Lithium-SR1 | x | odl-ovsdb-southbound-1.1.1-Lithium-SR1 | OpenDaylight :: southbound :: impl
odl-ovsdb-southbound-impl-rest|1.1.1-Lithium-SR1 | x | odl-ovsdb-southbound-1.1.1-Lithium-SR1| OpenDaylight :: southbound :: impl :: REST
odl-ovsdb-southbound-impl-ui | 1.1.1-Lithium-SR1| x | odl-ovsdb-southbound-1.1.1-Lithium-SR1| OpenDaylight :: southbound :: impl :: UI
opendaylight-user@opnfv>

ODL-12: To view the logs, you can use the following commands (or alternately the file data/log/karaf.log).

opendaylight-user@opnfv>log:display
opendaylight-user@opnfv>log:tail

ODL-13: To enable ODL DLUX UI, install the following features.
Then you can navigate to
http://<opnfv-odl-controller IP address>:8181/index.html for DLUX
UI. The default user-name and password is admin/admin.

opendaylight-user@opnfv>feature:install odl-dlux-core

ODL-14: To exit out of screen session, please use the command CTRL+a followed by d

Note: Do not kill the screen session, it will terminate the ODL controller.

At this moment, Open Daylight has been started successfully.

3.3. Setting Up OpenStack Controller Node

Please note that the instructions shown here are using devstack installer. If you are an experienced
user and installs OpenStack in a different way, you can skip this step and follow the instructions of the
method you are using to install OpenStack.

For exemplary purpose, we assume:

	The hostname of OpenStack Controller Node is opnfv-os-controller, and the host IP address is 192.168.0.10

	Ubuntu 14.04 or Fedora 21 is installed

	We use opnfv as username to login.

	We use devstack to install OpenStack Kilo. Please note that although the instructions are based on
OpenStack Kilo, they can be applied to Liberty in the same way.

OS-N-0: Login to OpenStack Controller Node with username opnfv

OS-N-1: Update the packages and install git

For Ubuntu:

sudo apt-get update -y
sudo apt-get install -y git

For Fedora:

sudo yum update -y
sudo yum install -y git

OS-N-2: Clone the following GitHub repository to get the configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git /opt/stack/opnfv_os_ipv6_poc

OS-N-3: Download devstack and switch to stable/kilo branch

git clone https://github.com/openstack-dev/devstack.git -b stable/kilo

OS-N-4: Start a new terminal, and change directory to where OpenStack is installed.

cd ~/devstack

OS-N-5: Create a local.conf file from the GitHub repo we cloned at OS-N-2.

cp /opt/stack/opnfv_os_ipv6_poc/scenario2/local.conf.odl.controller ~/devstack/local.conf

Please note that you need to change the IP address of ODL_MGR_IP to point to your actual IP address
of Open Daylight Controller.

OS-N-6: Initiate Openstack setup by invoking stack.sh

./stack.sh

OS-N-7: If the setup is successful you would see the following logs on the console. Please note
that the IP addresses are all for the purpose of example. Your IP addresses will match the ones
of your actual network interfaces.

This is your host IP address: 192.168.0.10
This is your host IPv6 address: ::1
Horizon is now available at http://192.168.0.10/
Keystone is serving at http://192.168.0.10:5000/
The default users are: admin and demo
The password: password

Please note that The IP addresses above are exemplary purpose. It will show you the actual IP address of your host.

OS-N-8: Assuming that all goes well, you can set OFFLINE=True and RECLONE=no in local.conf
to lock the codebase. Devstack uses these configuration parameters to determine if it has to run with
the existing codebase or update to the latest copy.

OS-N-9: Source the credentials.

opnfv@opnfv-os-controller:~/devstack$ source openrc admin demo

Please NOTE that the method of sourcing tenant credentials may vary depending on installers.
Please refer to relevant documentation of installers if you encounter any issue.

OS-N-10: Verify some commands to check if setup is working fine.

opnfv@opnfv-os-controller:~/devstack$ nova flavor-list
+----+-----------+-----------+------+-----------+------+-------+-------------+-----------+
| ID | Name | Memory_MB | Disk | Ephemeral | Swap | VCPUs | RXTX_Factor | Is_Public |
+----+-----------+-----------+------+-----------+------+-------+-------------+-----------+
1	m1.tiny	512	1	0		1	1.0	True
2	m1.small	2048	20	0		1	1.0	True
3	m1.medium	4096	40	0		2	1.0	True
4	m1.large	8192	80	0		4	1.0	True
5	m1.xlarge	16384	160	0		8	1.0	True
+----+-----------+-----------+------+-----------+------+-------+-------------+-----------+

Now you can start the Compute node setup.

3.4. Setting Up OpenStack Compute Node

Please note that the instructions shown here are using devstack installer. If you are an experienced user
and installs OpenStack in a different way, you can skip this step and follow the instructions of the method you
are using to install OpenStack.

For exemplary purpose, we assume:

	The hostname of OpenStack Compute Node is opnfv-os-compute, and the host IP address is 192.168.0.20

	Ubuntu 14.04 or Fedora 21 is installed

	We use opnfv as username to login.

	We use devstack to install OpenStack Kilo. Please note that although the instructions are based on
OpenStack Kilo, they can be applied to Liberty in the same way.

OS-M-0: Login to OpenStack Compute Node with username opnfv

OS-M-1: Update the packages and install git

For Ubuntu:

sudo apt-get update -y
sudo apt-get install -y git

For Fedora:

sudo yum update -y
sudo yum install -y git

OS-M-2: Clone the following GitHub repository to get the configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git /opt/stack/opnfv_os_ipv6_poc

OS-M-3: Download devstack and switch to stable/kilo branch

git clone https://github.com/openstack-dev/devstack.git -b stable/kilo

OS-M-4: Start a new terminal, and change directory to where OpenStack is installed.

cd ~/devstack

OS-M-5: Create a local.conf file from the GitHub repo we cloned at OS-M-2.

cp /opt/stack/opnfv_os_ipv6_poc/scenario2/local.conf.odl.compute ~/devstack/local.conf

Please Note:

	Note 1: you need to change the IP address of SERVICE_HOST to point to your actual IP address
of OpenStack Controller.

	Note 2: you need to change the IP address of ODL_MGR_IP to point to your actual IP address
of Open Daylight Controller.

OS-M-6: Initiate Openstack setup by invoking stack.sh

./stack.sh

OS-M-7: Assuming that all goes well, you should see the following output.

This is your host IP address: 192.168.0.20
This is your host IPv6 address: ::1

Please note that The IP addresses above are exemplary purpose. It will show you the actual IP address of your host.

You can set OFFLINE=True and RECLONE=no in local.conf to lock the codebase. Devstack uses these
configuration parameters to determine if it has to run with the existing codebase or update to the latest copy.

OS-M-8: Source the credentials.

opnfv@opnfv-os-compute:~/devstack$ source openrc admin demo

Please NOTE that the method of sourcing tenant credentials may vary depending on installers.
Please refer to relevant documentation of installers if you encounter any issue.

OS-M-9: You can verify that OpenStack is set up correctly by showing hypervisor list

opnfv@opnfv-os-compute:~/devstack$ nova hypervisor-list
+----+------------------------------------+---------+------------+
| ID | Hypervisor hostname | State | Status |
+----+------------------------------------+---------+------------+
| 1 | opnfv-os-controller | up | enabled |
| 2 | opnfv-os-compute | up | enabled |
+----+------------------------------------+---------+------------+

Now you can start to set up the service VM as an IPv6 vRouter in the environment of OpenStack and Open Daylight.

3.5. Setting Up a Service VM as an IPv6 vRouter

Now we can start to set up a service VM as an IPv6 vRouter. For exemplary purpose, we assume:

	The hostname of Open Daylight Controller Node is opnfv-odl-controller, and the host IP address is
192.168.0.30

	The hostname of OpenStack Controller Node is opnfv-os-controller, and the host IP address
is 192.168.0.10

	The hostname of OpenStack Compute Node is opnfv-os-compute, and the host IP address is 192.168.0.20

	We use opnfv as username to login.

	We use devstack to install OpenStack Kilo, and the directory is ~/devstack

	Note: all IP addresses as shown below are for exemplary purpose.

3.5.1. Note: Disable Security Groups in OpenStack ML2 Setup

Please note that Security Groups feature has been disabled automatically through local.conf configuration file
during the setup procedure of OpenStack in both Controller Node
and Compute Node using devstack.

If you are installing OpenStack using a different installer (i.e. not with devstack), please make sure
that Security Groups are disabled in the setup.

Please refer to
here
for the notes in Section 2.4, steps OS-NATIVE-SEC-1 through OS-NATIVE-SEC-3.

3.5.2. Source the Credentials in OpenStack Controller Node

SETUP-SVM-1: Login with username opnfv in OpenStack Controller Node opnfv-os-controller.
Start a new terminal, and change directory to where OpenStack is installed.

cd ~/devstack

SETUP-SVM-2: Source the credentials.

source the tenant credentials in devstack
opnfv@opnfv-os-controller:~/devstack$ source openrc admin demo

Please NOTE that the method of sourcing tenant credentials may vary depending on installers.
Please refer to relevant documentation of installers if you encounter any issue.

3.5.3. Add External Connectivity to br-ex

Because we need to manually create networks/subnets to achieve the IPv6 vRouter, we have used the flag
NEUTRON_CREATE_INITIAL_NETWORKS=False in local.conf file. When this flag is set to False,
devstack does not create any networks/subnets during the setup phase.

Now we have to move the physical interface (i.e. the public network interface) to br-ex,
including moving the public IP address and setting up default route. Please note that this step
may already have been done when you use a different installer to deploy OpenStack because that installer
may have already moved the physical interface to br-ex during deployment.

In OpenStack Controller Node opnfv-os-controller, eth1 is configured to provide external/public connectivity
for both IPv4 and IPv6 (optional). So let us add this interface to br-ex and move the IP address, including the
default route from eth1 to br-ex.

SETUP-SVM-3: Add eth1 to br-ex and move the IP address and the default route from eth1 to br-ex

sudo ip addr del 198.59.156.113/24 dev eth1
sudo ovs-vsctl add-port br-ex eth1
sudo ifconfig eth1 up
sudo ip addr add 198.59.156.113/24 dev br-ex
sudo ifconfig br-ex up
sudo ip route add default via 198.59.156.1 dev br-ex

Please note that:

	The IP address 198.59.156.113 and related subnet and gateway addressed in the command
below are for exemplary purpose. Please replace them with the IP addresses of your actual network.

	This can be automated in /etc/network/interfaces.

SETUP-SVM-4: Verify that br-ex now has the original external IP address, and that the default route is on
br-ex

opnfv@opnfv-os-controller:~/devstack$ ip a s br-ex
38: br-ex: <BROADCAST,UP,LOWER_UP> mtu 1430 qdisc noqueue state UNKNOWN group default
 link/ether 00:50:56:82:42:d1 brd ff:ff:ff:ff:ff:ff
 inet 198.59.156.113/24 brd 198.59.156.255 scope global br-ex
 valid_lft forever preferred_lft forever
 inet6 fe80::543e:28ff:fe70:4426/64 scope link
 valid_lft forever preferred_lft forever
opnfv@opnfv-os-controller:~/devstack$
opnfv@opnfv-os-controller:~/devstack$ ip route
default via 198.59.156.1 dev br-ex
192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.10
192.168.122.0/24 dev virbr0 proto kernel scope link src 192.168.122.1
198.59.156.0/24 dev br-ex proto kernel scope link src 198.59.156.113

Please note that The IP addresses above are exemplary purpose

3.5.4. Create IPv4 Subnet and Router with External Connectivity

SETUP-SVM-5: Create a Neutron router ipv4-router which needs to provide external connectivity.

neutron router-create ipv4-router

SETUP-SVM-6: Create an external network/subnet ext-net using the appropriate values based on the
data-center physical network setup.

Please NOTE that if you use a different installer, i.e. NOT devstack, your installer
may have already created an external network during installation. Under this circumstance,
you may only need to create the subnet of ext-net. When you create the subnet, you must
use the same name of external network that your installer creates.

If you use a different installer and it has already created an external work,
Please skip this command "net-create"
neutron net-create --router:external ext-net

If you use a different installer and it has already created an external work,
Change the name "ext-net" to match the name of external network that your installer has created
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

Please note that the IP addresses in the command above are for exemplary purpose. Please replace the IP addresses of
your actual network.

SETUP-SVM-7: Associate the ext-net to the Neutron router ipv4-router.

If you use a different installer and it has already created an external work,
Change the name "ext-net" to match the name of external network that your installer has created
neutron router-gateway-set ipv4-router ext-net

SETUP-SVM-8: Create an internal/tenant IPv4 network ipv4-int-network1

neutron net-create ipv4-int-network1

SETUP-SVM-9: Create an IPv4 subnet ipv4-int-subnet1 in the internal network ipv4-int-network1

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 ipv4-int-network1 20.0.0.0/24

SETUP-SVM-10: Associate the IPv4 internal subnet ipv4-int-subnet1 to the Neutron router ipv4-router.

neutron router-interface-add ipv4-router ipv4-int-subnet1

3.5.5. Create IPv6 Subnet and Router with External Connectivity

Now, let us create a second neutron router where we can “manually” spawn a radvd daemon to simulate an external
IPv6 router.

SETUP-SVM-11: Create a second Neutron router ipv6-router which needs to provide external connectivity

neutron router-create ipv6-router

SETUP-SVM-12: Associate the ext-net to the Neutron router ipv6-router

If you use a different installer and it has already created an external work,
Change the name "ext-net" to match the name of external network that your installer has created
neutron router-gateway-set ipv6-router ext-net

SETUP-SVM-13: Create a second internal/tenant IPv4 network ipv4-int-network2

neutron net-create ipv4-int-network2

SETUP-SVM-14: Create an IPv4 subnet ipv4-int-subnet2 for the ipv6-router internal network
ipv4-int-network2

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 ipv4-int-network2 10.0.0.0/24

SETUP-SVM-15: Associate the IPv4 internal subnet ipv4-int-subnet2 to the Neutron router ipv6-router.

neutron router-interface-add ipv6-router ipv4-int-subnet2

3.5.6. Prepare Image, Metadata and Keypair for Service VM

SETUP-SVM-16: Download fedora22 image which would be used as vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare --file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

SETUP-SVM-17: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

SETUP-SVM-18: Create ports for vRouter and both the VMs with some specific MAC addresses.

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv4-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1
neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

3.5.7. Boot Service VM (vRouter) with eth0 on ipv4-int-network2 and eth1 on ipv4-int-network1

Let us boot the service VM (vRouter) with eth0 interface on ipv4-int-network2 connecting to ipv6-router,
and eth1 interface on ipv4-int-network1 connecting to ipv4-router.

SETUP-SVM-19: Boot the vRouter using Fedora22 image on the OpenStack Compute Node with hostname
opnfv-os-compute

nova boot --image Fedora22 --flavor m1.small --user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt --availability-zone nova:opnfv-os-compute --nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') --nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') --key-name vRouterKey vRouter

Please note that /opt/stack/opnfv_os_ipv6_poc/metadata.txt is used to enable the vRouter to automatically
spawn a radvd, and

	Act as an IPv6 vRouter which advertises the RA (Router Advertisements) with prefix
2001:db8:0:2::/64 on its internal interface (eth1).

	Forward IPv6 traffic from internal interface (eth1)

SETUP-SVM-20: Verify that Fedora22 image boots up successfully and vRouter has ssh keys properly injected

nova list
nova console-log vRouter

Please note that it may take a few minutes for the necessary packages to get installed and ssh keys
to be injected.

Sample Output
[762.884523] cloud-init[871]: ec2: ###
[762.909634] cloud-init[871]: ec2: -----BEGIN SSH HOST KEY FINGERPRINTS-----
[762.931626] cloud-init[871]: ec2: 2048 e3:dc:3d:4a:bc:b6:b0:77:75:a1:70:a3:d0:2a:47:a9 (RSA)
[762.957380] cloud-init[871]: ec2: -----END SSH HOST KEY FINGERPRINTS-----
[762.979554] cloud-init[871]: ec2: ###

3.5.8. Boot Two Other VMs in ipv4-int-network1

In order to verify that the setup is working, let us create two cirros VMs with eth1 interface on the
ipv4-int-network1, i.e., connecting to vRouter eth1 interface for internal network.

We will have to configure appropriate mtu on the VMs’ interface by taking into account the tunneling
overhead and any physical switch requirements. If so, push the mtu to the VM either using dhcp
options or via meta-data.

SETUP-SVM-21: Create VM1 on OpenStack Controller Node with hostname opnfv-os-controller

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny --nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') --availability-zone nova:opnfv-os-controller --key-name vRouterKey --user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh VM1

SETUP-SVM-22: Create VM2 on OpenStack Compute Node with hostname opnfv-os-compute

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny --nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') --availability-zone nova:opnfv-os-compute --key-name vRouterKey --user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh VM2

SETUP-SVM-23: Confirm that both the VMs are successfully booted.

nova list
nova console-log VM1
nova console-log VM2

3.5.9. Spawn RADVD in ipv6-router

Let us manually spawn a radvd daemon inside ipv6-router namespace to simulate an external router.
First of all, we will have to identify the ipv6-router namespace and move to the namespace.

Please NOTE that in case of HA (High Availability) deployment model where multiple controller
nodes are used, ipv6-router created in step SETUP-SVM-11 could be in any of the controller
node. Thus you need to identify in which controller node ipv6-router is created in order to manually
spawn radvd daemon inside the ipv6-router namespace in steps SETUP-SVM-24 through
SETUP-SVM-30. The following command in Neutron will display the controller on which the
ipv6-router is spawned.

neutron l3-agent-list-hosting-router ipv6-router

Then you login to that controller and execute steps SETUP-SVM-24
through SETUP-SVM-30

SETUP-SVM-24: identify the ipv6-router namespace and move to the namespace

sudo ip netns exec qrouter-$(neutron router-list | grep -w ipv6-router | awk '{print $2}') bash

SETUP-SVM-25: Upon successful execution of the above command, you will be in the router namespace.
Now let us configure the IPv6 address on the <qr-xxx> interface.

export router_interface=$(ip a s | grep -w "global qr-*" | awk '{print $7}')
ip -6 addr add 2001:db8:0:1::1 dev $router_interface

SETUP-SVM-26: Update the sample file /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf
with $router_interface.

cp /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf /tmp/radvd.$router_interface.conf
sed -i 's/$router_interface/'$router_interface'/g' /tmp/radvd.$router_interface.conf

SETUP-SVM-27: Spawn a radvd daemon to simulate an external router. This radvd daemon advertises an IPv6
subnet prefix of 2001:db8:0:1::/64 using RA (Router Advertisement) on its $router_interface so that eth0
interface of vRouter automatically configures an IPv6 SLAAC address.

$radvd -C /tmp/radvd.$router_interface.conf -p /tmp/br-ex.pid.radvd -m syslog

SETUP-SVM-28: Add an IPv6 downstream route pointing to the eth0 interface of vRouter.

ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111

SETUP-SVM-29: The routing table should now look similar to something shown below.

ip -6 route show
2001:db8:0:1::1 dev qr-42968b9e-62 proto kernel metric 256
2001:db8:0:1::/64 dev qr-42968b9e-62 proto kernel metric 256 expires 86384sec
2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111 dev qr-42968b9e-62 proto ra metric 1024 expires 29sec
fe80::/64 dev qg-3736e0c7-7c proto kernel metric 256
fe80::/64 dev qr-42968b9e-62 proto kernel metric 256

SETUP-SVM-30: If all goes well, the IPv6 addresses assigned to the VMs would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address: 2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address: 2001:db8:0:2::1/64
VM1 would have the following IPv6 address: 2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address: 2001:db8:0:2:f816:3eff:fe44:4444/64

3.5.10. Testing to Verify Setup Complete

Now, let us SSH to those VMs, e.g. VM1 and / or VM2 and / or vRouter, to confirm that
it has successfully configured the IPv6 address using SLAAC with prefix
2001:db8:0:2::/64 from vRouter.

We use floatingip mechanism to achieve SSH.

SETUP-SVM-31: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
If you use a different installer and it has already created an external work,
Change the name "ext-net" to match the name of external network that your installer has created
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

If everything goes well, ssh will be successful and you will be logged into those VMs.
Run some commands to verify that IPv6 addresses are configured on eth0 interface.

SETUP-SVM-32: Show an IPv6 address with a prefix of 2001:db8:0:2::/64

ip address show

SETUP-SVM-33: ping some external IPv6 address, e.g. ipv6-router

ping6 2001:db8:0:1::1

If the above ping6 command succeeds, it implies that vRouter was able to successfully forward the IPv6 traffic
to reach external ipv6-router.

3.5.11. Next Steps

Congratulations, you have completed the setup of using a service VM to act as an IPv6 vRouter. This setup allows further
open innovation by any 3rd-party. Please refer to relevant sections in User’s Guide for further value-added services on
this IPv6 vRouter.

2. Scenario 1 - Native OpenStack Environment

Scenario 1 is the native OpenStack environment. Although the instructions are based on Liberty, they can be
applied to Kilo in the same way. Because the anti-spoofing rules of Security Group feature in OpenStack prevents
a VM from forwarding packets, we need to disable Security Group feature in the native OpenStack environment.

For exemplary purpose, we assume:

	A two-node setup of OpenStack environment is used as shown in s1-figure1

	The hostname of OpenStack Controller+Network+Compute Node is opnfv-os-controller, and the host IP address
is 192.168.0.10

	The hostname of OpenStack Compute Node is opnfv-os-compute, and the host IP address is 192.168.0.20

	Ubuntu 14.04 or Fedora 21 is installed

	We use opnfv as username to login.

	We use devstack to install OpenStack Liberty. Please note that OpenStack Kilo can be used as well.

[image: ../_images/ipv6-topology-scenario-1.png]
Underlay Network Topology - Scenario 1

Please NOTE that:

	The IP address shown in s1-figure1 are for exemplary purpose.
You need to configure your public IP address connecting to Internet according
to your actual network infrastructure. And you need to make sure the private IP address are
not conflicting with other subnets.

	Although the deployment model of single controller node is assumed, in case of HA (High Availability)
deployment model where multiple controller nodes are used, there is no impact and the setup procedure
is the same.

2.1. Prerequisite

OS-NATIVE-0: Clone the following GitHub repository to get the configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git /opt/stack/opnfv_os_ipv6_poc

2.2. Set up OpenStack Controller Node

We assume the hostname is opnfv-os-controller, and the host IP address is 192.168.0.10.

OS-NATIVE-N-1: Clone stable/liberty devstack code base.

git clone https://github.com/openstack-dev/devstack.git -b stable/liberty

OS-NATIVE-N-2: Copy local.conf.controller to devstack as local.conf

cp /opt/stack/opnfv_os_ipv6_poc/local.conf.controller ~/devstack/local.conf

OS-NATIVE-N-3: If you want to modify any devstack configuration, update local.conf now.

OS-NATIVE-N-4: Start the devstack installation.

cd ~/devstack
./stack.sh

OS-NATIVE-N-5: If all goes well, you should see the following output.

This is your host IP address: 192.168.0.10
This is your host IPv6 address: ::1
Horizon is now available at http://192.168.0.10/
Keystone is serving at http://192.168.0.10:5000/
The default users are: admin and demo
The password: password

2.3. Set up OpenStack Compute Node

We assume the hostname is opnfv-os-compute, and the host IP address is 192.168.0.20.

OS-NATIVE-M-1: Clone stable/liberty devstack code base.

git clone https://github.com/openstack-dev/devstack.git -b stable/liberty

OS-NATIVE-M-2: Copy local.conf.compute to devstack as local.conf

cp /opt/stack/opnfv_os_ipv6_poc/local.conf.compute ~/devstack/local.conf

Please note that you need to change the IP address of SERVICE_HOST to point to your actual IP
address of OpenStack Controller

OS-NATIVE-M-3: If you want to modify any devstack configuration, update local.conf now.

OS-NATIVE-M-4: Start the devstack installation.

cd ~/devstack
./stack.sh

OS-NATIVE-M-5: If all goes well, you should see the following output.

This is your host IP address: 192.168.0.20
This is your host IPv6 address: ::1

OS-NATIVE-M-6 (OPTIONAL): You can verify that OpenStack is set up correctly by showing hypervisor list

~/devstack$ nova hypervisor-list
+----+------------------------------------+---------+------------+
| ID | Hypervisor hostname | State | Status |
+----+------------------------------------+---------+------------+
| 1 | opnfv-os-controller | up | enabled |
| 2 | opnfv-os-compute | up | enabled |
+----+------------------------------------+---------+------------+

2.4. Note: Disable Security Groups in OpenStack ML2 Setup

Please note that Security Groups feature has been disabled automatically through local.conf configuration file
during the setup procedure of OpenStack in both Controller Node and Compute Node.

If you are an experienced user and installing OpenStack using a different installer (i.e. not with devstack),
please make sure that Security Groups are disabled in the setup. You can verify that your setup has the following
configuration parameters.

OS-NATIVE-SEC-1: Change the settings in /etc/neutron/plugins/ml2/ml2_conf.ini as follows

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
extension_drivers = port_security
enable_security_group = False
firewall_driver = neutron.agent.firewall.NoopFirewallDriver

OS-NATIVE-SEC-2: Change the settings in /etc/nova/nova.conf as follows

/etc/nova/nova.conf
[DEFAULT]
security_group_api = nova
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OS-NATIVE-SEC-3: After updating the settings, you will have to restart the
Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary
depending on the installer. Please refer to relevant documentation of specific installers

2.5. Set Up Service VM as IPv6 vRouter

OS-NATIVE-SETUP-1: Now we assume that OpenStack multi-node setup is up and running.
We have to source the tenant credentials in this step. The following commands should be executed
in devstack:

source the tenant credentials in devstack
cd ~/devstack
source openrc admin demo

Please NOTE that the method of sourcing tenant credentials may vary depending on installers.
Please refer to relevant documentation of installers if you encounter any issue.

OS-NATIVE-SETUP-2: Download fedora22 image which would be used for vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OS-NATIVE-SETUP-3: Import Fedora22 image to glance

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare --file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OS-NATIVE-SETUP-4: Now we have to move the physical interface (i.e. the public network interface)
to br-ex, including moving the public IP address and setting up default route. Please note that this step
may already have been done when you use a different installer to deploy OpenStack because that installer
may have already moved the physical interface to br-ex during deployment.

Because our opnfv-os-controller node has two interfaces eth0 and eth1,
and eth1 is used for external connectivity, move the IP address of eth1 to br-ex.

Please note that the IP address 198.59.156.113 and related subnet and gateway addressed in the command
below are for exemplary purpose. Please replace them with the IP addresses of your actual network.

sudo ip addr del 198.59.156.113/24 dev eth1
sudo ovs-vsctl add-port br-ex eth1
sudo ifconfig eth1 up
sudo ip addr add 198.59.156.113/24 dev br-ex
sudo ifconfig br-ex up
sudo ip route add default via 198.59.156.1 dev br-ex

OS-NATIVE-SETUP-5: Verify that br-ex now has the original external IP address, and that the default route is on
br-ex

opnfv@opnfv-os-controller:~/devstack$ ip a s br-ex
38: br-ex: <BROADCAST,UP,LOWER_UP> mtu 1430 qdisc noqueue state UNKNOWN group default
 link/ether 00:50:56:82:42:d1 brd ff:ff:ff:ff:ff:ff
 inet 198.59.156.113/24 brd 198.59.156.255 scope global br-ex
 valid_lft forever preferred_lft forever
 inet6 fe80::543e:28ff:fe70:4426/64 scope link
 valid_lft forever preferred_lft forever
opnfv@opnfv-os-controller:~/devstack$
opnfv@opnfv-os-controller:~/devstack$ ip route
default via 198.59.156.1 dev br-ex
192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.10
192.168.122.0/24 dev virbr0 proto kernel scope link src 192.168.122.1
198.59.156.0/24 dev br-ex proto kernel scope link src 198.59.156.113

Please note that the IP addresses above are exemplary purpose.

OS-NATIVE-SETUP-6: Create Neutron routers ipv4-router and ipv6-router which need to provide external
connectivity.

neutron router-create ipv4-router
neutron router-create ipv6-router

OS-NATIVE-SETUP-7: Create an external network/subnet ext-net using the appropriate values based on the
data-center physical network setup.

Please NOTE that if you use a different installer, i.e. NOT devstack, your installer
may have already created an external network during installation. Under this circumstance,
you may only need to create the subnet of ext-net. When you create the subnet, you must
use the same name of external network that your installer creates.

Please refer to the documentation of your installer if there is any issue

If you use a different installer and it has already created an external work,
Please skip this command "net-create"
neutron net-create --router:external ext-net

If you use a different installer and it has already created an external work,
Change the name "ext-net" to match the name of external network that your installer has created
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

OS-NATIVE-SETUP-8: Create Neutron networks ipv4-int-network1 and ipv6-int-network2
with port_security disabled

neutron net-create --port_security_enabled=False ipv4-int-network1
neutron net-create --port_security_enabled=False ipv6-int-network2

OS-NATIVE-SETUP-9: Create IPv4 subnet ipv4-int-subnet1 in the internal network ipv4-int-network1,
and associate it to ipv4-router.

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 ipv4-int-network1 20.0.0.0/24
neutron router-interface-add ipv4-router ipv4-int-subnet1

OS-NATIVE-SETUP-10: Associate the ext-net to the Neutron routers ipv4-router and ipv6-router.

If you use a different installer and it has already created an external work,
Change the name "ext-net" to match the name of external network that your installer has created
neutron router-gateway-set ipv4-router ext-net
neutron router-gateway-set ipv6-router ext-net

OS-NATIVE-SETUP-11: Create two subnets, one IPv4 subnet ipv4-int-subnet2 and one IPv6 subnet
ipv6-int-subnet2 in ipv6-int-network2, and associate both subnets to ipv6-router

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 ipv6-int-network2 10.0.0.0/24
neutron subnet-create --name ipv6-int-subnet2 --ip-version 6 --ipv6-ra-mode slaac --ipv6-address-mode slaac ipv6-int-network2 2001:db8:0:1::/64
neutron router-interface-add ipv6-router ipv4-int-subnet2
neutron router-interface-add ipv6-router ipv6-int-subnet2

OS-NATIVE-SETUP-12: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

OS-NATIVE-SETUP-13: Create ports for vRouter (with some specific MAC address - basically for automation -
to know the IPv6 addresses that would be assigned to the port).

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv6-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1

OS-NATIVE-SETUP-14: Create ports for VM1 and VM2.

neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

OS-NATIVE-SETUP-15: Update ipv6-router with routing information to subnet 2001:db8:0:2::/64

neutron router-update ipv6-router --routes type=dict list=true destination=2001:db8:0:2::/64,nexthop=2001:db8:0:1:f816:3eff:fe11:1111

OS-NATIVE-SETUP-16: Boot Service VM (vRouter), VM1 and VM2

nova boot --image Fedora22 --flavor m1.small --user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt --availability-zone nova:opnfv-os-compute --nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') --nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') --key-name vRouterKey vRouter
nova list
nova console-log vRouter #Please wait for some 10 to 15 minutes so that necessary packages (like radvd) are installed and vRouter is up.
nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny --nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') --availability-zone nova:opnfv-os-controller --key-name vRouterKey --user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh VM1
nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny --nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') --availability-zone nova:opnfv-os-compute --key-name vRouterKey --user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh VM2
nova list # Verify that all the VMs are in ACTIVE state.

OS-NATIVE-SETUP-17: If all goes well, the IPv6 addresses assigned to the VMs would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address: 2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address: 2001:db8:0:2::1/64
VM1 would have the following IPv6 address: 2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address: 2001:db8:0:2:f816:3eff:fe44:4444/64

OS-NATIVE-SETUP-18: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
If you use a different installer and it has already created an external work,
Change the name "ext-net" to match the name of external network that your installer has created
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

1. Architectural Design

The architectural design of using a service VM as an IPv6 vRouter is
shown as follows in arch-figure1:

[image: ../_images/ipv6-architecture.png]
Architectural Design of Using a VM as an IPv6 vRouter

This design applies to deployment model of single controller node as well as HA (High Availability)
deployment model of multiple controller nodes.

Setting Up a Service VM as an IPv6 vRouter

	Project

	IPv6, http://wiki.opnfv.org/ipv6_opnfv_project

	Editors

	Bin Hu (AT&T), Sridhar Gaddam (RedHat)

	Authors

	Sridhar Gaddam (RedHat), Bin Hu (AT&T)

	Abstract

	

This document provides the users with installation guidelines to create a Service VM as
an IPv6 vRouter in OPNFV environment, i.e. integrated OpenStack with Open Daylight
environment. There are three scenarios.

	Scenario 1 is pre-OPNFV environment, i.e. a native OpenStack environment
without Open Daylight Controller.

	Scenario 2 is an OPNFV environment where OpenStack is integrated with
Open Daylight Official Lithium Release. In this setup we use ODL for “Layer 2 connectivity”
and Neutron L3 agent for “Layer 3 routing”. Because of a bug, which got fixed recently
and is not part of ODL SR3, we will have to manually execute certain commands to simulate
an external IPv6 Router in this setup.

	Scenario 3 is similar to Scenario 2. However, we use an Open Daylight Lithium
controller which is built from the latest stable/Lithium branch which includes the fix.
In this scenario, we can fully automate the setup similar to Scenario 1.

Please NOTE that the instructions in this document assume the deployment model of single
controller node. In case of HA (High Availability) deployment model where multiple controller
nodes are used, the setup procedure is the same. In particular:

	There is No Impact on Scenario 1 and Scenario 3.

	For Scenario 2, when ipv6-router is created in step SETUP-SVM-11, it could be
created in any of the controller node. Thus you need to identify in which controller node
ipv6-router is created in order to manually spawn radvd daemon inside the
ipv6-router namespace in steps SETUP-SVM-24 through SETUP-SVM-30.

	1. Architectural Design

	2. Scenario 1 - Native OpenStack Environment
	2.1. Prerequisite

	2.2. Set up OpenStack Controller Node

	2.3. Set up OpenStack Compute Node

	2.4. Note: Disable Security Groups in OpenStack ML2 Setup

	2.5. Set Up Service VM as IPv6 vRouter

	3. Scenario 2 - OpenStack + Open Daylight Lithium Official Release
	3.1. Infrastructure Setup

	3.2. Setting Up Open Daylight Controller Node

	3.3. Setting Up OpenStack Controller Node

	3.4. Setting Up OpenStack Compute Node

	3.5. Setting Up a Service VM as an IPv6 vRouter
	3.5.1. Note: Disable Security Groups in OpenStack ML2 Setup

	3.5.2. Source the Credentials in OpenStack Controller Node

	3.5.3. Add External Connectivity to br-ex

	3.5.4. Create IPv4 Subnet and Router with External Connectivity

	3.5.5. Create IPv6 Subnet and Router with External Connectivity

	3.5.6. Prepare Image, Metadata and Keypair for Service VM

	3.5.7. Boot Service VM (vRouter) with eth0 on ipv4-int-network2 and eth1 on ipv4-int-network1

	3.5.8. Boot Two Other VMs in ipv4-int-network1

	3.5.9. Spawn RADVD in ipv6-router

	3.5.10. Testing to Verify Setup Complete

	3.5.11. Next Steps

	4. Scenario 3 - OpenStack + Open Daylight Lithium with Patch of Bug Fix
	4.1. Infrastructure Setup

	4.2. Setting Up Open Daylight Controller Node

	4.3. Setting Up OpenStack Controller Node

	4.4. Setting Up OpenStack Compute Node

	4.5. Setting Up a Service VM as an IPv6 vRouter
	4.5.1. Note: Disable Security Groups in OpenStack ML2 Setup

	4.5.2. Set Up Service VM as IPv6 vRouter

	5. Network Topology After Setup
	5.1. Post-Install Network Topology

	5.2. Sample Network Topology of this Setup through Horizon UI

	5.3. Sample Network Topology of this Setup through ODL DLUX UI

3. Scenario 2 - OpenStack + Open Daylight Lithium Official Release

Scenario 2 is the environment of OpenStack + Open Daylight Lithium SR3 Official Release.
Because Lithium SR3 Official Release does not support IPv6 L3 Routing, we need to enable
Neutron L3 Agent instead of Open Daylight L3 function, while we still use Open Daylight for
L2 switching. Because there is a bug in net-virt provider implementation, we need to use
manual configuration to simulate IPv6 external router in our setup.

Please note that although the instructions are based on OpenStack Kilo, they can be applied to Liberty in the same way.

	3.1. Infrastructure Setup

	3.2. Setting Up Open Daylight Controller Node

	3.3. Setting Up OpenStack Controller Node

	3.4. Setting Up OpenStack Compute Node

	3.5. Setting Up a Service VM as an IPv6 vRouter
	3.5.1. Note: Disable Security Groups in OpenStack ML2 Setup

	3.5.2. Source the Credentials in OpenStack Controller Node

	3.5.3. Add External Connectivity to br-ex

	3.5.4. Create IPv4 Subnet and Router with External Connectivity

	3.5.5. Create IPv6 Subnet and Router with External Connectivity

	3.5.6. Prepare Image, Metadata and Keypair for Service VM

	3.5.7. Boot Service VM (vRouter) with eth0 on ipv4-int-network2 and eth1 on ipv4-int-network1

	3.5.8. Boot Two Other VMs in ipv4-int-network1

	3.5.9. Spawn RADVD in ipv6-router

	3.5.10. Testing to Verify Setup Complete

	3.5.11. Next Steps

4.1. Infrastructure Setup

In order to set up the service VM as an IPv6 vRouter, we need to prepare 3 hosts,
each of which has minimum 8GB RAM and 40GB storage. One host is used as OpenStack Controller
Node. The second host is used as Open Daylight Controller Node. And the third one is used as
OpenStack Compute Node.

Please NOTE that Although the deployment model of single controller node is assumed, in case of HA
(High Availability) deployment model where multiple controller nodes are used, there is no impact and the
setup procedure is the same.

For exemplary purpose, we assume:

	The hostname of OpenStack Controller+Network+Compute Node is opnfv-os-controller, and the host IP address
is 192.168.0.10

	The hostname of OpenStack Compute Node is opnfv-os-compute, and the host IP address is 192.168.0.20

	The hostname of Open Daylight Controller Node is opnfv-odl-controller, and the host IP address is
192.168.0.30

	We use opnfv as username to login.

	We use devstack to install OpenStack Kilo. Please note that OpenStack Liberty can be used as well.

The underlay network topology of those 3 hosts are shown as follows in s3-figure1:

[image: ../_images/ipv6-topology-scenario-3.png]
Underlay Network Topology - Scenario 3

Please note that the IP address shown in s3-figure1
are for exemplary purpose. You need to configure your public IP
address connecting to Internet according to your actual network
infrastructure. And you need to make sure the private IP address are
not conflicting with other subnets.

4.2. Setting Up Open Daylight Controller Node

For exemplary purpose, we assume:

	The hostname of Open Daylight Controller Node is opnfv-odl-controller, and the host IP address is
192.168.0.30

	CentOS 7 is installed

	We use opnfv as username to login.

	Java 7 is installed in directory /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.85-2.6.1.2.el7_1.x86_64/

Please NOTE that this Scenario 3 uses an Open Daylight Lithium controller which is built
from the latest stable/Lithium branch that includes the fix of a bug, there is a prerequisite
that you are able to build this Open Daylight Lithium Controller from the the latest stable/Lithium
branch. Please refer to relevant documentation from Open Daylight.

ODL-1: Prerequisite - build Open Daylight Lithium Controller from the the latest
stable/Lithium branch, and make it available for step ODL-3.

ODL-2: Login to Open Daylight Controller Node with username opnfv.

ODL-3: Extract the tar file of your custom build of Open Daylight Lithium Controller
from step ODL-1.

tar -zxvf <filename-of-your-custom-build>.tar.gz

ODL-4: Install Java7

sudo yum install -y java-1.7.0-openjdk.x86_64

ODL-5 (OPTIONAL): We are using iptables instead of
firewalld but this is optional for the OpenDaylight Controller
Node. The objective is to allow all connections on the internal
private network (ens160). The same objective can be achieved using
firewalld as well. If you intend to use firewalld, please skip this step and directly go to next step:

sudo systemctl stop firewalld.service
sudo yum remove -y firewalld
sudo yum install -y iptables-services
sudo touch /etc/sysconfig/iptables
sudo systemctl enable iptables.service
sudo systemctl start iptables.service
sudo iptables -I INPUT 1 -i ens160 -j ACCEPT
sudo iptables -I INPUT -m state --state NEW -p tcp --dport 8181 -j ACCEPT # For ODL DLUX UI
sudo iptables-save > /etc/sysconfig/iptables

ODL-6: Open a screen session.

screen -S ODL_Controller

ODL-7: In the new screen session, change directory to where Open
Daylight is installed. Here we use odl directory name and
Lithium SR3 installation as an example.

cd ~/odl/distribution-karaf-0.3.3-Lithium-SR3/bin

ODL-8: Set the JAVA environment variables.

export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.85-2.6.1.2.el7_1.x86_64/jre
export PATH=$PATH:/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.85-2.6.1.2.el7_1.x86_64/jre/bin

ODL-9: Run the karaf shell.

./karaf

ODL-10: You are now in the Karaf shell of Open Daylight. To explore the list of available features you can execute
feature:list. In order to enable Open Daylight with OpenStack, you have to load the odl-ovsdb-openstack
feature.

opendaylight-user@opnfv>feature:install odl-ovsdb-openstack

ODL-11: Verify that OVSDB feature is installed successfully.

opendaylight-user@opnfv>feature:list -i | grep ovsdb
odl-ovsdb-openstack | 1.1.1-Lithium-SR1 | x | ovsdb-1.1.1-Lithium-SR1 | OpenDaylight :: OVSDB :: OpenStack Network Virtual
odl-ovsdb-southbound-api | 1.1.1-Lithium-SR1 | x | odl-ovsdb-southbound-1.1.1-Lithium-SR1 | OpenDaylight :: southbound :: api
odl-ovsdb-southbound-impl | 1.1.1-Lithium-SR1 | x | odl-ovsdb-southbound-1.1.1-Lithium-SR1 | OpenDaylight :: southbound :: impl
odl-ovsdb-southbound-impl-rest|1.1.1-Lithium-SR1 | x | odl-ovsdb-southbound-1.1.1-Lithium-SR1| OpenDaylight :: southbound :: impl :: REST
odl-ovsdb-southbound-impl-ui | 1.1.1-Lithium-SR1| x | odl-ovsdb-southbound-1.1.1-Lithium-SR1| OpenDaylight :: southbound :: impl :: UI
opendaylight-user@opnfv>

ODL-12: To view the logs, you can use the following commands (or alternately the file data/log/karaf.log).

opendaylight-user@opnfv>log:display
opendaylight-user@opnfv>log:tail

ODL-13: To enable ODL DLUX UI, install the following features.
Then you can navigate to
http://<opnfv-odl-controller IP address>:8181/index.html for DLUX
UI. The default user-name and password is admin/admin.

opendaylight-user@opnfv>feature:install odl-dlux-core

ODL-14: To exit out of screen session, please use the command CTRL+a followed by d

Note: Do not kill the screen session, it will terminate the ODL controller.

At this moment, Open Daylight has been started successfully.

4.3. Setting Up OpenStack Controller Node

Please note that the instructions shown here are using devstack installer. If you are an experienced
user and installs OpenStack in a different way, you can skip this step and follow the instructions of the
method you are using to install OpenStack.

For exemplary purpose, we assume:

	The hostname of OpenStack Controller Node is opnfv-os-controller, and the host IP address is 192.168.0.10

	Ubuntu 14.04 or Fedora 21 is installed

	We use opnfv as username to login.

	We use devstack to install OpenStack Kilo. Please note that although the instructions are based on
OpenStack Kilo, they can be applied to Liberty in the same way.

OS-N-0: Login to OpenStack Controller Node with username opnfv

OS-N-1: Update the packages and install git

For Ubuntu:

sudo apt-get update -y
sudo apt-get install -y git

For Fedora:

sudo yum update -y
sudo yum install -y git

OS-N-2: Clone the following GitHub repository to get the configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git /opt/stack/opnfv_os_ipv6_poc

OS-N-3: Download devstack and switch to stable/kilo branch

git clone https://github.com/openstack-dev/devstack.git -b stable/kilo

OS-N-4: Start a new terminal, and change directory to where OpenStack is installed.

cd ~/devstack

OS-N-5: Create a local.conf file from the GitHub repo we cloned at OS-N-2.

cp /opt/stack/opnfv_os_ipv6_poc/scenario2/local.conf.odl.controller ~/devstack/local.conf

Please note that:

	Note 1: Because Scenario 3 and Scenario 2 are essentially the same, and their only difference
is using different build of Open Daylight, they share the same local.conf file of OpenStack.

	Note 2: You need to change the IP address of ODL_MGR_IP to point to your actual IP address
of Open Daylight Controller.

OS-N-6: Initiate Openstack setup by invoking stack.sh

./stack.sh

OS-N-7: If the setup is successful you would see the following logs on the console. Please note
that the IP addresses are all for the purpose of example. Your IP addresses will match the ones
of your actual network interfaces.

This is your host IP address: 192.168.0.10
This is your host IPv6 address: ::1
Horizon is now available at http://192.168.0.10/
Keystone is serving at http://192.168.0.10:5000/
The default users are: admin and demo
The password: password

Please note that The IP addresses above are exemplary purpose. It will show you the actual IP address of your host.

OS-N-8: Assuming that all goes well, you can set OFFLINE=True and RECLONE=no in local.conf
to lock the codebase. Devstack uses these configuration parameters to determine if it has to run with
the existing codebase or update to the latest copy.

OS-N-9: Source the credentials.

opnfv@opnfv-os-controller:~/devstack$ source openrc admin demo

Please NOTE that the method of sourcing tenant credentials may vary depending on installers.
Please refer to relevant documentation of installers if you encounter any issue.

OS-N-10: Verify some commands to check if setup is working fine.

opnfv@opnfv-os-controller:~/devstack$ nova flavor-list
+----+-----------+-----------+------+-----------+------+-------+-------------+-----------+
| ID | Name | Memory_MB | Disk | Ephemeral | Swap | VCPUs | RXTX_Factor | Is_Public |
+----+-----------+-----------+------+-----------+------+-------+-------------+-----------+
1	m1.tiny	512	1	0		1	1.0	True
2	m1.small	2048	20	0		1	1.0	True
3	m1.medium	4096	40	0		2	1.0	True
4	m1.large	8192	80	0		4	1.0	True
5	m1.xlarge	16384	160	0		8	1.0	True
+----+-----------+-----------+------+-----------+------+-------+-------------+-----------+

Now you can start the Compute node setup.

4.4. Setting Up OpenStack Compute Node

Please note that the instructions shown here are using devstack installer. If you are an experienced user
and installs OpenStack in a different way, you can skip this step and follow the instructions of the method you
are using to install OpenStack.

For exemplary purpose, we assume:

	The hostname of OpenStack Compute Node is opnfv-os-compute, and the host IP address is 192.168.0.20

	Ubuntu 14.04 or Fedora 21 is installed

	We use opnfv as username to login.

	We use devstack to install OpenStack Kilo. Please note that although the instructions are based on
OpenStack Kilo, they can be applied to Liberty in the same way.

OS-M-0: Login to OpenStack Compute Node with username opnfv

OS-M-1: Update the packages and install git

For Ubuntu:

sudo apt-get update -y
sudo apt-get install -y git

For Fedora:

sudo yum update -y
sudo yum install -y git

OS-M-2: Clone the following GitHub repository to get the configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git /opt/stack/opnfv_os_ipv6_poc

OS-M-3: Download devstack and switch to stable/kilo branch

git clone https://github.com/openstack-dev/devstack.git -b stable/kilo

OS-M-4: Start a new terminal, and change directory to where OpenStack is installed.

cd ~/devstack

OS-M-5: Create a local.conf file from the GitHub repo we cloned at OS-M-2.

cp /opt/stack/opnfv_os_ipv6_poc/scenario2/local.conf.odl.compute ~/devstack/local.conf

Please Note:

	Note 1: Because Scenario 3 and Scenario 2 are essentially the same, and their only difference
is using different build of Open Daylight, they share the same local.conf file of OpenStack.

	Note 2: you need to change the IP address of SERVICE_HOST to point to your actual IP address
of OpenStack Controller.

	Note 3: you need to change the IP address of ODL_MGR_IP to point to your actual IP address
of Open Daylight Controller.

OS-M-6: Initiate Openstack setup by invoking stack.sh

./stack.sh

OS-M-7: Assuming that all goes well, you should see the following output.

This is your host IP address: 192.168.0.20
This is your host IPv6 address: ::1

Please note that The IP addresses above are exemplary purpose. It will show you the actual IP address of your host.

You can set OFFLINE=True and RECLONE=no in local.conf to lock the codebase. Devstack uses these
configuration parameters to determine if it has to run with the existing codebase or update to the latest copy.

OS-M-8: Source the credentials.

opnfv@opnfv-os-compute:~/devstack$ source openrc admin demo

Please NOTE that the method of sourcing tenant credentials may vary depending on installers.
Please refer to relevant documentation of installers if you encounter any issue.

OS-M-9: You can verify that OpenStack is set up correctly by showing hypervisor list

opnfv@opnfv-os-compute:~/devstack$ nova hypervisor-list
+----+------------------------------------+---------+------------+
| ID | Hypervisor hostname | State | Status |
+----+------------------------------------+---------+------------+
| 1 | opnfv-os-controller | up | enabled |
| 2 | opnfv-os-compute | up | enabled |
+----+------------------------------------+---------+------------+

Now you can start to set up the service VM as an IPv6 vRouter in the environment of OpenStack and Open Daylight.

4.5. Setting Up a Service VM as an IPv6 vRouter

Now we can start to set up a service VM as an IPv6 vRouter. For exemplary purpose, we assume:

	The hostname of Open Daylight Controller Node is opnfv-odl-controller, and the host IP address is
192.168.0.30

	The hostname of OpenStack Controller Node is opnfv-os-controller, and the host IP address
is 192.168.0.10

	The hostname of OpenStack Compute Node is opnfv-os-compute, and the host IP address is 192.168.0.20

	We use opnfv as username to login.

	We use devstack to install OpenStack Kilo, and the directory is ~/devstack

	Note: all IP addresses as shown below are for exemplary purpose.

4.5.1. Note: Disable Security Groups in OpenStack ML2 Setup

Please note that Security Groups feature has been disabled automatically through local.conf configuration file
during the setup procedure of OpenStack in both
Controller Node
and Compute Node using devstack.

If you are installing OpenStack using a different installer (i.e. not with devstack), please make sure
that Security Groups are disabled in the setup.

Please refer to
here
for the notes in Section 2.4, steps OS-NATIVE-SEC-1 through OS-NATIVE-SEC-3.

4.5.2. Set Up Service VM as IPv6 vRouter

SCENARIO-3-SETUP-1: Now we assume that OpenStack multi-node setup is up and running. The following
commands should be executed:

cd ~/devstack

source the tenant credentials in devstack
source openrc admin demo

Please NOTE that the method of sourcing tenant credentials may vary depending on installers.
Please refer to relevant documentation of installers if you encounter any issue.

SCENARIO-3-SETUP-2: Download fedora22 image which would be used for vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

SCENARIO-3-SETUP-3: Import Fedora22 image to glance

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare --file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

SCENARIO-3-SETUP-4: Now we have to move the physical interface (i.e. the public network interface)
to br-ex, including moving the public IP address and setting up default route. Please note that this step
may already have been done when you use a different installer to deploy OpenStack because that installer
may have already moved the physical interface to br-ex during deployment.

Because our opnfv-os-controller node has two interfaces eth0 and eth1,
and eth1 is used for external connectivity, move the IP address of eth1 to br-ex.

Please note that the IP address 198.59.156.113 and related subnet and gateway addressed in the command
below are for exemplary purpose. Please replace them with the IP addresses of your actual network.

sudo ip addr del 198.59.156.113/24 dev eth1
sudo ovs-vsctl add-port br-ex eth1
sudo ifconfig eth1 up
sudo ip addr add 198.59.156.113/24 dev br-ex
sudo ifconfig br-ex up
sudo ip route add default via 198.59.156.1 dev br-ex

SCENARIO-3-SETUP-5: Verify that br-ex now has the original external IP address, and that the default route is on
br-ex

opnfv@opnfv-os-controller:~/devstack$ ip a s br-ex
38: br-ex: <BROADCAST,UP,LOWER_UP> mtu 1430 qdisc noqueue state UNKNOWN group default
 link/ether 00:50:56:82:42:d1 brd ff:ff:ff:ff:ff:ff
 inet 198.59.156.113/24 brd 198.59.156.255 scope global br-ex
 valid_lft forever preferred_lft forever
 inet6 fe80::543e:28ff:fe70:4426/64 scope link
 valid_lft forever preferred_lft forever
opnfv@opnfv-os-controller:~/devstack$
opnfv@opnfv-os-controller:~/devstack$ ip route
default via 198.59.156.1 dev br-ex
192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.10
192.168.122.0/24 dev virbr0 proto kernel scope link src 192.168.122.1
198.59.156.0/24 dev br-ex proto kernel scope link src 198.59.156.113

Please note that the IP addresses above are exemplary purpose.

SCENARIO-3-SETUP-6: Create Neutron routers ipv4-router and ipv6-router which need to provide external
connectivity.

neutron router-create ipv4-router
neutron router-create ipv6-router

SCENARIO-3-SETUP-7: Create an external network/subnet ext-net using the appropriate values based on the
data-center physical network setup.

Please NOTE that if you use a different installer, i.e. NOT devstack, your installer
may have already created an external network during installation. Under this circumstance,
you may only need to create the subnet of ext-net. When you create the subnet, you must
use the same name of external network that your installer creates.

If you use a different installer and it has already created an external work,
Please skip this command "net-create"
neutron net-create --router:external ext-net

If you use a different installer and it has already created an external work,
Change the name "ext-net" to match the name of external network that your installer has created
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

SCENARIO-3-SETUP-8: Create Neutron networks ipv4-int-network1 and ipv6-int-network2

neutron net-create ipv4-int-network1
neutron net-create ipv6-int-network2

SCENARIO-3-SETUP-9: Create IPv4 subnet ipv4-int-subnet1 in the internal network ipv4-int-network1,
and associate it to ipv4-router.

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 ipv4-int-network1 20.0.0.0/24
neutron router-interface-add ipv4-router ipv4-int-subnet1

SCENARIO-3-SETUP-10: Associate the ext-net to the Neutron routers ipv4-router and ipv6-router.

If you use a different installer and it has already created an external work,
Change the name "ext-net" to match the name of external network that your installer has created
neutron router-gateway-set ipv4-router ext-net
neutron router-gateway-set ipv6-router ext-net

SCENARIO-3-SETUP-11: Create two subnets, one IPv4 subnet ipv4-int-subnet2 and one IPv6 subnet
ipv6-int-subnet2 in ipv6-int-network2, and associate both subnets to ipv6-router

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 ipv6-int-network2 10.0.0.0/24
neutron subnet-create --name ipv6-int-subnet2 --ip-version 6 --ipv6-ra-mode slaac --ipv6-address-mode slaac ipv6-int-network2 2001:db8:0:1::/64
neutron router-interface-add ipv6-router ipv4-int-subnet2
neutron router-interface-add ipv6-router ipv6-int-subnet2

SCENARIO-3-SETUP-12: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

SCENARIO-3-SETUP-13: Create ports for vRouter (with some specific MAC address - basically for automation -
to know the IPv6 addresses that would be assigned to the port).

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv6-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1

SCENARIO-3-SETUP-14: Create ports for VM1 and VM2.

neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

SCENARIO-3-SETUP-15: Update ipv6-router with routing information to subnet 2001:db8:0:2::/64

neutron router-update ipv6-router --routes type=dict list=true destination=2001:db8:0:2::/64,nexthop=2001:db8:0:1:f816:3eff:fe11:1111

SCENARIO-3-SETUP-16: Boot Service VM (vRouter), VM1 and VM2

nova boot --image Fedora22 --flavor m1.small --user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt --availability-zone nova:opnfv-os-compute --nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') --nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') --key-name vRouterKey vRouter
nova list
nova console-log vRouter #Please wait for some 10 to 15 minutes so that necessary packages (like radvd) are installed and vRouter is up.
nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny --nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') --availability-zone nova:opnfv-os-controller --key-name vRouterKey --user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh VM1
nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny --nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') --availability-zone nova:opnfv-os-compute --key-name vRouterKey --user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh VM2
nova list # Verify that all the VMs are in ACTIVE state.

SCENARIO-3-SETUP-17: If all goes well, the IPv6 addresses assigned to the VMs would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address: 2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address: 2001:db8:0:2::1/64
VM1 would have the following IPv6 address: 2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address: 2001:db8:0:2:f816:3eff:fe44:4444/64

SCENARIO-3-SETUP-18: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
If you use a different installer and it has already created an external work,
Change the name "ext-net" to match the name of external network that your installer has created
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

4. Scenario 3 - OpenStack + Open Daylight Lithium with Patch of Bug Fix

Scenario 3 is the environment of OpenStack + Open Daylight Lithium,
which is similar to Scenario 2. However, we use an Open Daylight Lithium
controller which is built from the latest stable/Lithium branch that includes the fix of a bug.
In this scenario, we can fully automate the setup similar to Scenario 1.

	4.1. Infrastructure Setup

	4.2. Setting Up Open Daylight Controller Node

	4.3. Setting Up OpenStack Controller Node

	4.4. Setting Up OpenStack Compute Node

	4.5. Setting Up a Service VM as an IPv6 vRouter
	4.5.1. Note: Disable Security Groups in OpenStack ML2 Setup

	4.5.2. Set Up Service VM as IPv6 vRouter

5. Network Topology After Setup

5.1. Post-Install Network Topology

The network topology after setting up service VM as IPv6 vRouter is shown as follows postinstall-figure1:

[image: ../_images/ipv6-postinstall-topology.png]
Post-Install Network Topology

5.2. Sample Network Topology of this Setup through Horizon UI

The sample network topology of the setup will be shown in Horizon UI as follows setup-figure1:

[image: ../_images/ipv6-sample-in-horizon.png]
Sample Network Topology in Horizon UI

5.3. Sample Network Topology of this Setup through ODL DLUX UI

If you set up either Scenario 2 or Scenario 3, the sample network topology of the setup
will be shown in Open Daylight DLUX UI as follows s23-figure1:

[image: ../_images/odl-dlux_ipv6_poc.png]
Sample Network Topology in Open Daylight DLUX UI

Using IPv6 Feature of Colorado Release

This section provides the users with gap analysis regarding IPv6 feature requirements with
OpenStack Mitaka Official Release and Open Daylight Boron Official Release. The gap analysis
serves as feature specific user guides and references when as a user you may leverage the
IPv6 feature in the platform and need to perform some IPv6 related operations.

IPv6 Gap Analysis with OpenStack Mitaka

This section provides users with IPv6 gap analysis regarding feature requirement with
OpenStack Neutron in Mitaka Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with OpenStack Neutron in Mitaka Official Release.

	Use Case / Requirement

	Supported in Mitaka

	Notes

	All topologies work in a multi-tenant environment

	Yes

	The IPv6 design is following the Neutron tenant networks model;
dnsmasq is being used inside DHCP network namespaces, while radvd
is being used inside Neutron routers namespaces to provide full
isolation between tenants. Tenant isolation can be based on VLANs,
GRE, or VXLAN encapsulation. In case of overlays, the transport
network (and VTEPs) must be IPv4 based as of today.

	IPv6 VM to VM only

	Yes

	It is possible to assign IPv6-only addresses to VMs. Both switching
(within VMs on the same tenant network) as well as east/west routing
(between different networks of the same tenant) are supported.

	IPv6 external L2 VLAN directly attached to a VM

	Yes

	IPv6 provider network model; RA messages from upstream (external)
router are forwarded into the VMs

	IPv6 subnet routed via L3 agent to an external IPv6 network

	Both VLAN and overlay (e.g. GRE, VXLAN) subnet attached
to VMs;

	Must be able to support multiple L3 agents for a given
external network to support scaling (neutron scheduler
to assign vRouters to the L3 agents)

	
	Yes

	Yes

	Configuration is enhanced since Kilo to allow easier setup of the
upstream gateway, without the user being forced to create an IPv6
subnet for the external network.

	Ability for a NIC to support both IPv4 and IPv6 (dual
stack) address.

	VM with a single interface associated with a network,
which is then associated with two subnets.

	VM with two different interfaces associated with two
different networks and two different subnets.

	
	Yes

	Yes

	Dual-stack is supported in Neutron with the addition of
Multiple IPv6 Prefixes Blueprint

	Support IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	
	Yes

	Yes

	Yes

	

	Ability to create a port on an IPv6 DHCPv6 Stateful subnet
and assign a specific IPv6 address to the port and have it
taken out of the DHCP address pool.

	Yes

	

	Ability to create a port with fixed_ip for a
SLAAC/DHCPv6-Stateless Subnet.

	No

	The following patch disables this operation:
https://review.openstack.org/#/c/129144/

	Support for private IPv6 to external IPv6 floating IP;
Ability to specify floating IPs via Neutron API (REST and
CLI) as well as via Horizon, including combination of
IPv6/IPv4 and IPv4/IPv6 floating IPs if implemented.

	Rejected

	Blueprint proposed in upstream and got rejected. General expectation
is to avoid NAT with IPv6 by assigning GUA to tenant VMs. See
https://review.openstack.org/#/c/139731/ for discussion.

	Provide IPv6/IPv4 feature parity in support for
pass-through capabilities (e.g., SR-IOV).

	To-Do

	The L3 configuration should be transparent for the SR-IOV
implementation. SR-IOV networking support introduced in Juno based
on the sriovnicswitch ML2 driver is expected to work with IPv4
and IPv6 enabled VMs. We need to verify if it works or not.

	Additional IPv6 extensions, for example: IPSEC, IPv6
Anycast, Multicast

	No

	It does not appear to be considered yet (lack of clear requirements)

	VM access to the meta-data server to obtain user data, SSH
keys, etc. using cloud-init with IPv6 only interfaces.

	No

	This is currently not supported. Config-drive or dual-stack IPv4 /
IPv6 can be used as a workaround (so that the IPv4 network is used
to obtain connectivity with the metadata service)

	Full support for IPv6 matching (i.e., IPv6, ICMPv6, TCP,
UDP) in security groups. Ability to control and manage all
IPv6 security group capabilities via Neutron/Nova API (REST
and CLI) as well as via Horizon.

	Yes

	

	During network/subnet/router create, there should be an
option to allow user to specify the type of address
management they would like. This includes all options
including those low priority if implemented (e.g., toggle
on/off router and address prefix advertisements); It must
be supported via Neutron API (REST and CLI) as well as via
Horizon

	Yes

	Two new Subnet attributes were introduced to control IPv6 address
assignment options:

	ipv6-ra-mode: to determine who sends Router Advertisements;

	ipv6-address-mode: to determine how VM obtains IPv6 address,
default gateway, and/or optional information.

	Security groups anti-spoofing: Prevent VM from using a
source IPv6/MAC address which is not assigned to the VM

	Yes

	

	Protect tenant and provider network from rogue RAs

	Yes

	When using a tenant network, Neutron is going to automatically
handle the filter rules to allow connectivity of RAs to the VMs only
from the Neutron router port; with provider networks, users are
required to specify the LLA of the upstream router during the subnet
creation, or otherwise manually edit the security-groups rules to
allow incoming traffic from this specific address.

	Support the ability to assign multiple IPv6 addresses to
an interface; both for Neutron router interfaces and VM
interfaces.

	Yes

	

	Ability for a VM to support a mix of multiple IPv4 and IPv6
networks, including multiples of the same type.

	Yes

	

	Support for IPv6 Prefix Delegation.

	Yes

	Partial support in Mitaka

	Distributed Virtual Routing (DVR) support for IPv6

	No

	Blueprint proposed upstream, pending discussion.

	IPv6 First-Hop Security, IPv6 ND spoofing

	Yes

	

	IPv6 support in Neutron Layer3 High Availability
(keepalived+VRRP).

	Yes

	

IPv6 Gap Analysis with Open Daylight Boron

This section provides users with IPv6 gap analysis regarding feature requirement with
Open Daylight Boron Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with Open Daylight Boron Official Release.

Open Daylight Boron Status

There are 2 options in Open Daylight Boron to provide Virtualized Networks:

	1 Old Netvirt: netvirt implementation used in Open Daylight Beryllium Release

	identified by feature odl-ovsdb-openstack

	2 New Netvirt: netvirt implementation which will replace the Old Netvirt in the

	future releases based on a more modular design. It is identified by feature
odl-netvirt-openstack

	Use Case / Requirement

	Supported in ODL Boron

	Notes

	
Old Netvirt

(odl-ovsdb-openstack)

	
New Netvirt

(odl-netvirt-openstack)

	REST API support for IPv6 subnet creation in ODL

	Yes

	Yes

	Yes, it is possible to create IPv6 subnets in ODL using
Neutron REST API.

For a network which has both IPv4 and IPv6 subnets, ODL
mechanism driver will send the port information which includes
IPv4/v6 addresses to ODL Neutron northbound API. When port
information is queried it displays IPv4 and IPv6 addresses.

	IPv6 Router support in ODL

	Communication between VMs on same compute node

	Communication between VMs on different compute
nodes (east-west)

	External routing (north-south)

	No

	Partial

	IPv6 Router support is work in progress in ODL.

Currently communication between VMs on the same network is
supported, and the support for the other modes is work in
progress.

	IPAM: Support for IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	No

	Yes

	ODL IPv6 Router supports all the IPv6 Address assignment modes
along with Neutron DHCP Agent.

	When using ODL for L2 forwarding/tunneling, it is
compatible with IPv6.

	Yes

	Yes

	

	Full support for IPv6 matching (i.e. IPv6, ICMPv6,
TCP, UDP) in security groups. Ability to control
and manage all IPv6 security group capabilities
via Neutron/Nova API (REST and CLI) as well as via
Horizon

	Partial

	Partial

	Security Groups for IPv6 is a work in progress, and some
partial support is available.

	Shared Networks support

	Yes

	Yes

	

	IPv6 external L2 VLAN directly attached to a VM.

	ToDo

	ToDo

	

	ODL on an IPv6 only Infrastructure.

	No

	Work in Progress

	Deploying OpenStack with ODL on an IPv6 only infrastructure
where the API endpoints are all IPv6 addresses.

Using IPv6 Feature of Colorado Release

This section provides the users with gap analysis regarding IPv6 feature requirements with
OpenStack Mitaka Official Release and Open Daylight Boron Official Release. The gap analysis
serves as feature specific user guides and references when as a user you may leverage the
IPv6 feature in the platform and need to perform some IPv6 related operations.

IPv6 Gap Analysis with OpenStack Mitaka

This section provides users with IPv6 gap analysis regarding feature requirement with
OpenStack Neutron in Mitaka Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with OpenStack Neutron in Mitaka Official Release.

	Use Case / Requirement

	Supported in Mitaka

	Notes

	All topologies work in a multi-tenant environment

	Yes

	The IPv6 design is following the Neutron tenant networks model;
dnsmasq is being used inside DHCP network namespaces, while radvd
is being used inside Neutron routers namespaces to provide full
isolation between tenants. Tenant isolation can be based on VLANs,
GRE, or VXLAN encapsulation. In case of overlays, the transport
network (and VTEPs) must be IPv4 based as of today.

	IPv6 VM to VM only

	Yes

	It is possible to assign IPv6-only addresses to VMs. Both switching
(within VMs on the same tenant network) as well as east/west routing
(between different networks of the same tenant) are supported.

	IPv6 external L2 VLAN directly attached to a VM

	Yes

	IPv6 provider network model; RA messages from upstream (external)
router are forwarded into the VMs

	IPv6 subnet routed via L3 agent to an external IPv6 network

	Both VLAN and overlay (e.g. GRE, VXLAN) subnet attached
to VMs;

	Must be able to support multiple L3 agents for a given
external network to support scaling (neutron scheduler
to assign vRouters to the L3 agents)

	
	Yes

	Yes

	Configuration is enhanced since Kilo to allow easier setup of the
upstream gateway, without the user being forced to create an IPv6
subnet for the external network.

	Ability for a NIC to support both IPv4 and IPv6 (dual
stack) address.

	VM with a single interface associated with a network,
which is then associated with two subnets.

	VM with two different interfaces associated with two
different networks and two different subnets.

	
	Yes

	Yes

	Dual-stack is supported in Neutron with the addition of
Multiple IPv6 Prefixes Blueprint

	Support IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	
	Yes

	Yes

	Yes

	

	Ability to create a port on an IPv6 DHCPv6 Stateful subnet
and assign a specific IPv6 address to the port and have it
taken out of the DHCP address pool.

	Yes

	

	Ability to create a port with fixed_ip for a
SLAAC/DHCPv6-Stateless Subnet.

	No

	The following patch disables this operation:
https://review.openstack.org/#/c/129144/

	Support for private IPv6 to external IPv6 floating IP;
Ability to specify floating IPs via Neutron API (REST and
CLI) as well as via Horizon, including combination of
IPv6/IPv4 and IPv4/IPv6 floating IPs if implemented.

	Rejected

	Blueprint proposed in upstream and got rejected. General expectation
is to avoid NAT with IPv6 by assigning GUA to tenant VMs. See
https://review.openstack.org/#/c/139731/ for discussion.

	Provide IPv6/IPv4 feature parity in support for
pass-through capabilities (e.g., SR-IOV).

	To-Do

	The L3 configuration should be transparent for the SR-IOV
implementation. SR-IOV networking support introduced in Juno based
on the sriovnicswitch ML2 driver is expected to work with IPv4
and IPv6 enabled VMs. We need to verify if it works or not.

	Additional IPv6 extensions, for example: IPSEC, IPv6
Anycast, Multicast

	No

	It does not appear to be considered yet (lack of clear requirements)

	VM access to the meta-data server to obtain user data, SSH
keys, etc. using cloud-init with IPv6 only interfaces.

	No

	This is currently not supported. Config-drive or dual-stack IPv4 /
IPv6 can be used as a workaround (so that the IPv4 network is used
to obtain connectivity with the metadata service)

	Full support for IPv6 matching (i.e., IPv6, ICMPv6, TCP,
UDP) in security groups. Ability to control and manage all
IPv6 security group capabilities via Neutron/Nova API (REST
and CLI) as well as via Horizon.

	Yes

	

	During network/subnet/router create, there should be an
option to allow user to specify the type of address
management they would like. This includes all options
including those low priority if implemented (e.g., toggle
on/off router and address prefix advertisements); It must
be supported via Neutron API (REST and CLI) as well as via
Horizon

	Yes

	Two new Subnet attributes were introduced to control IPv6 address
assignment options:

	ipv6-ra-mode: to determine who sends Router Advertisements;

	ipv6-address-mode: to determine how VM obtains IPv6 address,
default gateway, and/or optional information.

	Security groups anti-spoofing: Prevent VM from using a
source IPv6/MAC address which is not assigned to the VM

	Yes

	

	Protect tenant and provider network from rogue RAs

	Yes

	When using a tenant network, Neutron is going to automatically
handle the filter rules to allow connectivity of RAs to the VMs only
from the Neutron router port; with provider networks, users are
required to specify the LLA of the upstream router during the subnet
creation, or otherwise manually edit the security-groups rules to
allow incoming traffic from this specific address.

	Support the ability to assign multiple IPv6 addresses to
an interface; both for Neutron router interfaces and VM
interfaces.

	Yes

	

	Ability for a VM to support a mix of multiple IPv4 and IPv6
networks, including multiples of the same type.

	Yes

	

	Support for IPv6 Prefix Delegation.

	Yes

	Partial support in Mitaka

	Distributed Virtual Routing (DVR) support for IPv6

	No

	Blueprint proposed upstream, pending discussion.

	IPv6 First-Hop Security, IPv6 ND spoofing

	Yes

	

	IPv6 support in Neutron Layer3 High Availability
(keepalived+VRRP).

	Yes

	

IPv6 Gap Analysis with Open Daylight Boron

This section provides users with IPv6 gap analysis regarding feature requirement with
Open Daylight Boron Official Release. The following table lists the use cases / feature
requirements of VIM-agnostic IPv6 functionality, including infrastructure layer and VNF
(VM) layer, and its gap analysis with Open Daylight Boron Official Release.

Open Daylight Boron Status

There are 2 options in Open Daylight Boron to provide Virtualized Networks:

	1 Old Netvirt: netvirt implementation used in Open Daylight Beryllium Release

	identified by feature odl-ovsdb-openstack

	2 New Netvirt: netvirt implementation which will replace the Old Netvirt in the

	future releases based on a more modular design. It is identified by feature
odl-netvirt-openstack

	Use Case / Requirement

	Supported in ODL Boron

	Notes

	
Old Netvirt

(odl-ovsdb-openstack)

	
New Netvirt

(odl-netvirt-openstack)

	REST API support for IPv6 subnet creation in ODL

	Yes

	Yes

	Yes, it is possible to create IPv6 subnets in ODL using
Neutron REST API.

For a network which has both IPv4 and IPv6 subnets, ODL
mechanism driver will send the port information which includes
IPv4/v6 addresses to ODL Neutron northbound API. When port
information is queried it displays IPv4 and IPv6 addresses.

	IPv6 Router support in ODL

	Communication between VMs on same compute node

	Communication between VMs on different compute
nodes (east-west)

	External routing (north-south)

	No

	Partial

	IPv6 Router support is work in progress in ODL.

Currently communication between VMs on the same network is
supported, and the support for the other modes is work in
progress.

	IPAM: Support for IPv6 Address assignment modes.

	SLAAC

	DHCPv6 Stateless

	DHCPv6 Stateful

	No

	Yes

	ODL IPv6 Router supports all the IPv6 Address assignment modes
along with Neutron DHCP Agent.

	When using ODL for L2 forwarding/tunneling, it is
compatible with IPv6.

	Yes

	Yes

	

	Full support for IPv6 matching (i.e. IPv6, ICMPv6,
TCP, UDP) in security groups. Ability to control
and manage all IPv6 security group capabilities
via Neutron/Nova API (REST and CLI) as well as via
Horizon

	Partial

	Partial

	Security Groups for IPv6 is a work in progress, and some
partial support is available.

	Shared Networks support

	Yes

	Yes

	

	IPv6 external L2 VLAN directly attached to a VM.

	ToDo

	ToDo

	

	ODL on an IPv6 only Infrastructure.

	No

	Work in Progress

	Deploying OpenStack with ODL on an IPv6 only infrastructure
where the API endpoints are all IPv6 addresses.

 _images/odl-dlux_ipv6_poc.png
Controls

openflow:2621828!

_images/routed-network-environment.png
ip- 6 route add default via feB0::1 dev ethd

ip- 6 route add 2001:db8:1::/48 via fe80::1:1 dev eth’
ip- B route add 2001:db8:2::/48 via feB::2:1 dev eth’

eth02001:db8:2:0::1/64
feB02.1/64

ip- 6 route add defaultvia fe80: 1\

ip- 6 route add 200 1:db8:
dev dockerd

managed by Docker

eth0 2001:db8:2:1.:2/64

ip -6 route add defauit via fe80::1 dev ethD ip -6 route add default via feB0::1 dev ethd

containers’ link-locsl addressas are nat displayed

_images/link-local.jpg
11111110 1000 0000 0300 0000 0000 000 000 000 0000 0000 0000 0000 0000 0000

Interface ID

_images/ndp-proxying.png
eth0 2001:db8:a001/64

Router

eth 2001:db8: 1164

eih0 2001:db8:b001/64

eihD 2001:db8:C001/64 ~&th0 2001:db8:C00Y/64

Host1

Host2

Host

Container x

docker0 fe80:1/64 expected Container

Tocation

eth0 2001:0b8::c009/125

eth0 2001:0b8::c00a/125

Containert

Container2

_static/ajax-loader.gif

_images/unicast-scope.jpg
Global Unicast Addrass Giobal Scope

Unigque Local Addrass

Organization / Site Scope

Links Local Address & e eone

_images/unique-local.jpg
1111110

prefix | L|

Global ID.

Subnet ID

Interface ID

1Bit

40Bits

16 Bits

64 Bits

_static/comment-bright.png

_static/comment-close.png

_images/ipv6-topology-scenario-1.png
Scenario 1: Native OpenStack
Multi-node Setup.

eth1[198.59.156.113

opnfv-os-controller opnfv-os-compute
OpenStack Controller
+ Network+ OpenStack Compute
Compute Node Node
eth0 eth0
192.168.0.10 192.168.0.20 I

Underlay Network

_images/ipv6-topology-scenario-2.png
Scenario 2: OpenStack Kilo/Liberty with Neutron L3
Agent and OpenDaylight Lithium Release

eth1[198.59.156.113

opnfv-os-controller opnfv-os-compute opnfv-odI-controller
OpenStack Controller
+ Network+ OpenStack Compute OpenDaylight
Compute Node Node Controller Node
eth0 eth0 eth0
192.168.0.10 192.168.0.20 I 192.168.0.30 I

Underlay Network

_images/ipv6-postinstall-topology.png
Network Topology

Neutron Namespace

T3H0MIBU-uI-pAd)

(b2/0°95T°65°86T) U-1x>

HOMIPU-JuL-pAd)

Instance

VM1

Instance

M2

_images/ipv6-sample-in-horizon.png
Network Topology

22 omal | @ Launch Instance

T
“DUOMIDLEUE pAd)

Instance

@ 120 ST 65 8T
20000z

_images/ipv6-topology-scenario-3.png
Scenario 3: OpenStack Kilo/Liberty with Neutron L3
Agent and OpenDaylight Stable/Lithium with BugFix

eth1[198.59.156.113

opnfv-os-controller opnfv-os-compute opnfv-odI-controller
OpenStack Controller
+ Network+ OpenStack Compute OpenDaylight
Compute Node Node Controller Node
eth0 eth0 eth0
192.168.0.10 192.168.0.20 I 192.168.0.30 I

Underlay Network

_static/comment.png

nav.xhtml

 Table of Contents

 		
 IPv6

 		
 OPNFV IPv6 Project Release Notes

 		
 OPNFV IPv6 Project Release Notes

 		
 Version History

 		
 Release Data

 		
 Important Notes

 		
 Summary

 		
 Known Limitations, Issues and Workarounds

 		
 Test Result

 		
 References

 		
 IPv6 Installation Procedure

 		
 Install OPNFV on IPv6-Only Infrastructure

 		
 Install OPNFV in OpenStack-Only Environment

 		
 Install OPNFV in OpenStack with ODL-L3 Environment

 		
 Testing Methodology

 		
 IPv6 Configuration Guide

 		
 IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter

 		
 Pre-configuration Activities

 		
 Setup Manual in OpenStack-Only Environment

 		
 IPv6 Post Installation Procedures

 		
 Automated post installation activities

 		
 Using IPv6 Feature of Hunter Release

 		
 IPv6 Gap Analysis with OpenStack Rocky

 		
 IPv6 Gap Analysis with Open Daylight Fluorine

 		
 Exploring IPv6 in Container Networking

 		
 Install Docker Community Edition (CE)

 		
 IPv6 with Docker

 		
 Design Simple IPv6 Topologies

 		
 Design Solutions

 		
 Challenges in Production Use

 		
 References

 		
 ICMPv6 and NDP

 		
 IPv6-only Containers & Using NDP Proxying

 		
 References

 		
 Docker IPv6 Simple Cluster Topology

 		
 Switched Network Environment

 		
 Routed Network Environment

 		
 References

 		
 Docker IPv6 NAT

 		
 What is the Issue with Using IPv6 with Containers?

 		
 Why not IPv6 with NAT?

 		
 Conclusion

 		
 References

_images/global-unicast.jpg
GlobelRouing Prefc

Subner D

Isrface D

e

168

s

_images/ipv6-architecture.png
POC-X3: Using a VM as the IPv6 router

- -
= Vraiveoe o o o
=
= [=}
.
PO
i :
Legend
E—peE— T —————, r ==
ExtemaliProvider NV se— PhyskalSerers Physical Sewvers

Underlay Network

HoTE

~Brint inall Hodes (I etvork and Compute) is bridged to eh0

~Virtual L2 switch (Open ySwitch) s controlled by OpenStack Neuron/ODL and resides on all nodes

_static/file.png

_static/down-pressed.png

_images/docker-ipv6-cluster-example.png
&lh 200140 164 el 2001 8630264

JGd dew elhd
JB4via 2001dbE 0.2

ipr 6 roube acd 2001 bE: 16 dev docken)

igr 6 roule acd 2001 db8.2.064 dev docked

dockesl fef0.1/G4

E1HD 2001 4 1 16 ehD 2001 dbE 1 264 1] 2001 a2 IR wth) 2001 dbE 3 26

-6 route add defaull via 01 dev et

canfainers’ i-ocal sodrerses s ot DiEayed

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

